
Free software and research:
a rationale and a tutorial

Francesco Potortı̀
ISTI - CNR

via Moruzzi, 1 – I-56124 Pisa
Email: Potorti@isti.cnr.it

Abstract— “Free software licenses are a natural choice in a
research environment.” In the following, we will try to back this
simple statement with some considerations and examples, in an
effort to analyse the significant interactions between free software
and research. An appendix lists and describes the most common
terms used wben speaking about software licenses and suggests
guidelines for choosing a free license.

I. WHAT IS FREE SOFTWARE

Free software is rooted in the concepts of freedom of speech
and free exchange of information. In scientific environments,
the latter concept is especially prized. Free and easy diffusion
of information is generally regarded as one of the main forces
behind the exceptionally fast growth of scientific knowledge
over the last three centuries.

However, the freedom of exchanging ideas is not simply
a practical matter: it lies at the base of the concepts of
freedom of thought and freedom of expression. Just like ideas,
software is immaterial, and can be easily reproduced and
transmitted. Just like ideas, its growth and its evolution is
advantaged from free diffusion. And just like ideas, more and
more software is involved in society, producing effects that are
ethical, economical, political and in a general sense, cultural.

During the Eighties, Richard Stallman formalised the con-
cept of free software for the first time. Stallman’s definition is
widely recognised as the canonical definition of free software.
It consists of four rules, the four freedoms:

Freedom 0, or fundamental Freedom: The freedom to exe-
cute the program, for any purpose.

Freedom 1: The freedom to study the program, and adapt
it to your needs.

Freedom 2: The freedom to redistribute copies.
Freedom 3: The freedom to improve the program, and

release your improvements to the public.
Freedoms 1 and 3 require access to the source code. A

program released with a software license that grants the four
freedoms is said to be free software. Notice that free in free
software refers to freedom, not price.

II. SOFTWARE LICENSES

A software license is a legal document that accompanies
a program. Without a software license, according to the
provisions laid down within the Berne copyright convention,
a program cannot be copied or modified without the explicit
permission of the authors. A free software license, on the

other hand, allows you to study, copy, modify and release the
modified program.

Most of the commonly used software licenses are pro-
prietary licenses, i.e., they do not grant the four freedoms.
They do not usually allow users to freely copy or modify the
program. Often they do not even allow you to keep separate
copies of the program on your desktop and laptop computers,
to make a trial copy on a colleague’s computer, or to keep
a complete backup installation in case your main computer
crashes. Since proprietary programs are typically distributed
without the source code, they do not allow you to study how
they work, or to improve them or adapt them to your needs.

Free licenses, on the other hand, do grant the four freedoms.
Free licenses may be copyleft or non-copyleft.

A copyleft license is a free license that uses the copyright
laws to do the opposite of what proprietary licenses usually
do. While proprietary licenses prevent you from copying or
modifying the program, a copyleft license is a free license
that uses copyright laws to keep the program free. This can
be explained by saying that the license is persistent. If you get
a copylefted program and you want to redistribute it, either in
modified or unmodified form, you must give the recipients the
same rights you acquired when you received the program. A
prerequisite for this is that you distribute the source code along
with the program. The most widespread copyleft license is the
GNU GPL.

A non-copyleft license is a non-persistent free license. If
you get a non-copylefted program and you want to redistribute
it, you are not bound to give the recipients the same rights
you acquired when you received the program. Most non-
copyleft free licenses allow you to make proprietary versions
of the program, or even to just redistribute it verbatim using a
different license, even a proprietary one. The most widespread
non-copyleft license is the BSD license.

III. COMMON MISCONCEPTIONS AND FALSE

ASSESSMENTS

While the keywords free software and open source have
gained wide popularity, they are often misrepresented, giving
rise to many false beliefs, even in the specialised press and
among technical experts. Here we will try to highlight and
correct just a few of these.



A. Open source software is not the same thing as free software

From a practical standpoint Open Source and Free Software
are one and the same thing. In fact, apart from some minor
licenses, the open source licenses identified by the Open
Source Definition are the same as the free software licenses
identified by the Free Software definition.

The difference arises from the principles that gave rise to
the two definitions: while free software is defined on the basis
of ethical and political reasons, open source is defined on the
basis of practicalities and convenience. In this document, open
source and free software are used interchangeably, but the
latter is preferred because its definition is clearer and more
concrete.

B. Open source is a software development method

Strictly speaking, open source is a licensing model, not
a development method. Many open source advocates claim
that the two are linked, but this remains an opinion, and as
such is debatable. Eric Raymond’s famous essay The cathedral
and the bazaar tries to draw a clear line between centralised
and distributed development methods. The former is used for
Emacs, the main editor of the GNU project, while the latter
is used for the Linux kernel. Raymond’s conclusion is that
the distributed development method is inherently superior as
far as big projects are concerned, and that if you want to use
distributed development with a large scale project, you need
an open source license.

However, the license and the development method used are
largely independent issues, and they should not be confused. In
fact, while it is true that distributed development methods can
naturally be applied to open source projects, they are also used
in the big software firms for developing proprietary programs.
On the other hand, since centralised development is almost
always easier to manage, it is widely used for open source
projects, and is no stranger to proprietary programs.

C. Free software is technically superior / inferior

Both statements are false, in general: there is no established
relationship between the license used and the quality of the
software. Free software has the potential for greater reliability
because anyone can study the source code, and all bugs are
shallow to a million eyes, but this potentialities not necessarily
translate into reality. The only case where a strong point can
be made about the technical superiority of free software is
when dealing with security software, such as cryptography or
signature programs.

D. Free software costs more / less

Neither of these statements in generally true, because, in
most cases, the cost of software depends only partially on
the license fees. Installation, training, maintenance, upgrading
and customisation typically constitute a much greater portion
of software costs, and there is no direct relationship between
the license used and the expense needed. It is easy to name
cases where free software can cost much more or much less
than comparable proprietary solutions.

E. Free software has no copyright / copyleft means non
copyright

Neither is ever true, because anything published without
a copyright license is subject to the Berne international
copyright convention; this means that it cannot be copied or
modified without explicit consent from the author. Programs
published according to these terms are not free. Free software
must be distributed along with a software license that releases
the standard copyright restrictions. A copyleft license is a kind
of free software license, and is founded on the copyright law.

F. Writing or modifying free software means I have to release
it publicly

No free software license forces you to do this. If you write
free software for release to a restricted number of recipients,
neither you nor the recipients are forced to release it further,
whether modified or not. However, you cannot prevent the
recipients from releasing the software, if they so wish.

G. Releasing a free program will create a community around
it

Creating a community around a program requires much
more than releasing it publicly as free software. On the one
hand you are not obliged to manage a community every time
you release a free program; on the other if you want to create
a community you must build and feed it: this is usually a
difficult and time-consuming task, though it may be well worth
the effort. Note than you can build a community around a
proprietary program, but this is generally much more difficult.

IV. FREE SOFTWARE AND RESEARCH

Modern science is connatural with the free exchange of
knowledge.

All scientific research today relies heavily on free and
flowing exchange of information, in all possible forms: con-
gresses, conferences, magazines, web sites, professor invita-
tions, seminars, remote and face-to-face cooperation, common
research projects are all considered essential features of the
modern scientific environment. They enable cross-fertilisation
of ideas, open the minds of researchers, contribute significantly
to the birth of new concepts, and form the foundations for the
incremental improvement of results. Moreover, these features
create a peer-to-peer network of mutual control that makes
advancement of science outstandingly reliable – yet efficient
– among the complex processes created by human civilisation.

Free software is a natural product of a research environment.
The birth and development process of software has much
in common with that of scientific ideas. Just like scientific
research, software is improved by learning from others’ re-
sults, a process which is much more efficient if the software
source code is disclosed, similarly to disclosing the details of
scientific findings.

Growth through the accumulation of results is common to
scientific research and software. Isaac Newton said that if
he had seen further, it was by standing on the shoulders of
giants. Software development shows a similar pattern: most



successful programs grow with time, they evolve and improve
incrementally. Both in the research and software fields, open
knowledge greatly helps the process, which is only possible if
modification is allowed.

Science is credible because in principle everyone can check
its results. In order to make this principle applicable, re-
searchers are encouraged to publish their results in a form that
allows a complete and accurate scrutiny by any independent
third party, usually in the form of scientific papers where all
the relevant points are detailed. This is similar to the way free
software programs can gain credibility: by making their source
code available, open to scrutiny by any third party.

Credibility and reliability come hand in hand. Scientific
results are reliable because they are independently repeatable.
A good scientific paper makes it possible to reproduce the
results of an experiment, be it physical or conceptual, by
disclosing enough details for independent researchers to repro-
duce the experiment and verify that the results are the same.
Something similar happens for software, where the reliability
of a program can be tested by making the source code available
for inspection and recompilation on different machines and
architectures.

With scientific research, cooperation is the name of the
game. Research languishes without cooperation: it is a mental
habit for researchers, who should and generally do find it nat-
ural to exchange ideas and results. A cooperative environment
is as fertile for software development as it is for research:
software developers find it easy and natural to exchange pieces
of code and ideas, and can benefit from the work of others.

V. ADVANTAGES IN ACADEMIA

The production of free software can bring advantages in
academia and generally in research environments, from a
purely scientific production viewpoint in terms of published
papers, from an image standpoint and from a business appli-
cation perspective in terms of development.

Scientific research works involving or including free soft-
ware implementations are naturally suited for publication,
because:

• Working methods are fully disclosed, because the source
code is available. This is something a peer reviewer will
appreciate.

• Dissemination of results is encouraged, because the
source code can be freely copied and republished. Being
cited often increases the value of a paper.

• Results can be easily reused and incrementally improved,
thanks to the free software license. This increases the
chance for a paper to became a seminal work. It is
worth noting that, if the license is copyleft, the code
is guaranteed to remain free when improvements are
published.

Sporting a corpus of developed and published free software
is convenient for research institutions because:

• It represents a source of pride, because it is a showcase
where the scientific institution can clearly exhibit its

contribution to advances in scientific knowledge and
benefits for the public at large.

• It helps to receive contributions from many sources,
because researchers are often keen to contribute im-
provements and corrections to published free software,
especially if they use it or are working on it.

• Making it clear from the beginning of a project that it will
be publicly distributed with a free software license usu-
ally reduces the problems related to copyright attribution.
For example, anyone can modify a program previously
started by an author who then happens to give it up.
Also, authors will usually more willingly contribute to
a free software project rather than one that will remain
the closed property of an institution.

It is a common belief that, when going commercial, pro-
prietary software is the safest option. However, free software
offers many advantages with regard to the relationship between
academia and business:

• If, after in-house research, development is handed over to
a spinoff, there will be no licensing problems, because no
copyright issues will arise between the mother institution
and the spinoff.

• Releasing a program as free software is a good way
to create and promote new standards. A free software
program can be released as a proof of concept, as a
reference implementation of the proposed standard, or
even as a high-quality, completely usable implementation
of the standard.

• Technological transfer is simplified, because no particular
copyright issues arise when transferring the programs
from the research institution to businesses.

• Spinoffs or internal business sections can coexist with
internal research development and mutually benefit from
each other, exchanging code in both directions without
any particular copyright agreements, as long as the code
is exchanged with a free software license.

VI. ENCOURAGING THE PRODUCTION OF FREE SOFTWARE

IN RESEARCH INSTITUTIONS

We argue that research institution involved with writing
software should encourage researchers to use a free software
license when releasing software written as part of their re-
search.

In particular, publicly funded research should, as a general
rule, disseminate the results produced in software form by
publishing them with a free license, so that they can be freely
studied, copied and modified. Such a policy would have a
positive effect on some of the main objectives of publicly
funded research by:

• contributing to public knowledge;
• boosting research advancement;
• creating a software base for the industry to exploit.
There are several ways to encourage free software produc-

tion in scientific research institutions.
First and foremost, research project financing should nor-

mally require that the results of the research be published



with a free software license. If no requirement is possible,
the financing institution should clearly point out that the aim
of the project is the advancement of public knowledge, and
consequently the use of free software licenses is encouraged.

In addition to project financing institutions, all scientific
institutions should have a policy that software produced with
public fundings should remain free. Whether the license should
be persistent or not (copyleft or not) is a matter of discussion.
Generally speaking, the advantage of a non-copyleft license
is that it does not prevent embedding free software in a pro-
prietary program, which makes things easier for the software
industry, while the advantage of a copyleft license is that it
forces to release improvements as free software, thus enlarging
the base of available free software.

When a research institution has a policy of financing and
encouraging spinoffs, those who base their business on free
software should be favoured with respect to the others, because
business based on free software creates a healthy software
business environment and promotes locally-based work.

From a purely academic point of view, writing and publish-
ing free software should be regarded as a research achievement
per se, analogous to publishing a research work by means of
a paper on a journal. In order to make this possible, a network
of software peer reviewing should be created, similarly to the
current procedure adapted with the publishing of scientific
papers. We advocate the setup of such a network, and we
claim that published free research software should be peer
reviewed in the same way that research articles are reviewed,
and consequently should be similarly considered a research
achievement.

Just as diffusing one’s findings is highly prized in research
community, diffusing software should also. Research institu-
tions should encourage this cultural process, by openly stating
that publishing free software is as important as publishing
other research results, and by using internal evaluation pro-
cesses in accordance.

Just as authors and readers of scientific papers recognise
the great value of disclosing the exact procedures described,
they should recognise the need for reading and modifying the
source of software described in such documents. This should
be considered by publishers, editors and reviewers of scientific
journals when evaluating a contribution.

APPENDIX

SOFTWARE LICENSES

A software license is a legal document that accompanies
a program. Without a software license, according to the
provisions laid down within the Berne copyright convention, a
program cannot be distributed or modified without the explicit
permission of the authors. A free software license, on the other
hand, allows you to study, redistribute, modify and release the
modified program.

A. Proprietary licenses

Any license that is not free is said to be proprietary.
Proprietary licenses come in a variety of flavours. Here is a

brief description of some of the terms most commonly used
when distributing software in research environments with a
proprietary license.

1) No license : Even if this is not a license, the final
effect is that of a proprietary license. Every program that is
not accompanied by a copyright license is subject to the Berne
international copyright convention, and can not be distributed
or modified without the explicit consent of the copyright
holders. This means that the program is not free without a
free copyright license, even when the source is available, with
or without charge.

2) Freeware : Without any other specifications, a program
is said to be freeware if it can be copied freely at no charge,
for any use. Usually does not come with source, or has some
other restriction that makes it not free.

3) Shareware : A shareware program can be freely copied
and distributed, but cannot be rightfully used without paying
for it after an initial period of test usage.

4) Restricted use : A common constraint that makes a
license non-free is the non-commercial clause. Many programs
are distributed as free for non-commercial use, that is, they can
be used without charge as long as no money is gained from
ther use. Similar clauses are for personal use, for academic
use, for educational use. Other restrictions include the non
trasferable clause, wich prevents free redistribution. Such
programs may come with or without source, usually without.

5) No source available : Most proprietary programs are
distributed in binary-only form. The binary may or may not
have limits on its usage.

6) Non disclosure agreement : Sometimes programs are
distributed only after the recipient has signed a contract (the
agreement) where the signer agrees not to divulge some kind
of information about the program. This is common when the
source is distributed, but cannot be further redistributed. For
example, the signer can agree not to divulge information about
the details of how the program works.

B. Choosing and using a free software license

A free software license is one that allows the recipient of
the program to use it for any purpose, copy, modify, and
redistribute it. Whether money is charged for distribution has
no relevance.

In order to make a program free, you should accompany
the source code with a file (usually named LICENSE.TXT)
containing the text of the license you choose. Moreover, it
is very advisable to add a copyright line at the top of each
source file, similar to the one that is found at the bottom of
this document. When you modify the file, make sure that you
add the current year to the list of years in the copyright line.
If writing a c© character is a problem, use the three characters
(C) instead. After the copyright line, write one more line
saying that the copyright licensing terms are contained in the
accompanying file LICENSE.TXT.

Do not try to write your own license. It is very difficult to
come up with something well written, even if you are a lawyer.



Also, using an established license has many advantages: peo-
ple know it and what are their implications, they are written
by lawyers, they have long been tested on the field, they make
it easier to share code between free software projects.

What license should you choose for your program? It
depends on your aims. As also mentioned in the Debian Free
Software Guidelines FAQ and an article by David A. Wheeler,
we suggest using one of the three following licenses.

1) The GNU General Public License : If you want to be
sure that every copy of your program, even modified copies,
will be accompanied by the corresponding source, or else
by an easy way of getting the source, you should use the
GNU GPL. This is the most successful license of all, used for
the programs developed by the GNU Project and many others.
Examples include the Linux kernel, the GNU Emacs editor,
the portable GCC compiler, the KDE and Gnome desktops for
X.

2) The GNU Lesser General Public License : If you
want to be sure that your software remains free even after
modification, but you want to leave people free to link it
against any program, be it free or proprietary, you should
use the GNU LGPL. This is a GPL compatible license, used
mostly for libraries, plugins and components. Some notable
available under the LGPL include the i386 emulator Bochs,
many of the Gnome desktop libraries, the C library Glibc, and
the C++ library libg++ .

3) The BSD-like licenses : If you aim at maximum
diffusion for your code by allowing its use in any program,
be it free or proprietary, you should use the new BSD license
(also called the BSD license without the advertising clause)
or the MIT X license. Successful programs released under
one of these licenses include the kernel and core utilities of
the FreeBSD operating system, the XFree86 X server, many
networking utilities, and the Apache web server.

ACKNOWLEDGEMENTS

I’d like to thank Prof. Piero Maestrini for his continued
support and his ideas about advocating peer reviewing of
software. I also thank Associazione software libero, of which
I am a member, for discussions and encouragement.

COPYRIGHT

Copyright c© 2003 Francesco Potortı̀
The most recent hypertext version with pointers to relevant
web documents is available at http://fly.isti.cnr.
it/sl/fs-and-research.html.
Verbatim copying and distribution of this entire article is per-
mitted in any medium, provided that this notice is preserved.
Updated: 2003-12-21


