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Abstract. Fading on the mobile propagation channel is modeled as a
Markov chain with unspecified state space and order. State space and
memory are selected via the context tree pruning (CTP) algorithm
that has provable optimality in fitting Markov models of unknown
order. CTP provides a hierarchy of models of increasing dimension
each of which may be considered the “best” approximation of the
fading channel among Markov models of that dimension. A particular
model may then be selected by a criterion appropriate for the task
that the discrete model will perform. An example herein considers
the model’s ability to faithfully mimic statistics of sojourn times in
each channel state. That criterion choice is relevant for simulation of
channel access and use schemes that exploit channel memory.

1 Introduction

Wireless communications are experiencing continued growth due to their in-
trinsic features of flexibility. That growth brings pressure to make better use
of channel capacity, either by allowing a greater number of users to access
services or by increasing the effective bandwidth of services themselves. The
main limitation is the mobile fading channel, and although coding and in-
terleaving may limit the effects of fading by making the data stream appear
independent, a capacity penalty is introduced by that strategy. Communi-
cation systems that achieve capacity must consider channel memory [1]. To
this purpose and because they are amenable to analysis and efficient simu-
lation, finite state Markov models have been considered by several authors
[2, 3,4, 5, 6, 7]. In particular, first-order models have been built as approxima-
tions to the classic Clarke’s model [8] and statistical analysis and simulation
support the accuracy of the first order model for very slow fading or fast
fading [9]. Between those regimes, however, the available results suggest that
the first order model can be an oversimplification.



In this paper a modeling technique developed originally for data com-
pression is adapted to the task of estimating a Markov chain model of the
fading channel [10]. A context tree is a particular minimal parameterization
of a Markov chain and the context tree pruning algorithm described in [10]
has provable optimality in estimating the Markov model when the order of
dependence is unknown. CTP provides a hierarchy of models of increasing
dimension each of which may be considered the “best” approximation of the
fading channel among models of that dimension. As the models become more
complex, the degree to which they approximate the fading channel improves.
The designer chooses the smallest model that meets their approximation
requirements as defined by a problem specific fidelity criterion. For access
schemes, we consider the case that the goodness of the model is defined with
respect to its fidelity in reproducing the times that the channel is in a par-
ticular state.

We unify the comparison of finite state models of different memory length
by using the context tree pruning (CTP) algorithm together with a fidelity
criterion (e.g. Kolmogorov distance applied to sojourn time distribution in
each channel state). Context tree data sources and CTP are summarized in
§2. 83 describes the fading simulator. The application of context tree pruning
to simulated fading data is presented in §4 and further discussion in §5.

2 A Variable Order Markov Model

Figure 1 illustrates the spirit of much recent work in information theory that
highlights the importance of describing models using a minimal number of
parameters [11, 12]. A context tree is a particular minimal parameterization
of the k-th order Markov source P(zp|Zp—1 - Zn—k) and also the name of
the data structure by which such sources may be estimated (e.g. [10]). Fig-
ures 2 and 3 compare the representations for an example with memory k = 2.
The estimation task is to discover the conditional probability mass function
of a finite alphabet Markov process based on an observed training sequence
T = x1x9 - - - TN where each x,, € A and A is a finite set. The probability mass
function for a symbol, z,1, resides on the tree leaf specified by the recent
history or context of the process: ,,,Zn—1,-- .- The source is defined by its set
of contexts, C, and a parameter vector, 6, that specifies transition probabili-
ties. The context tree source has fewer defining parameters (dim ) because,
where possible, contexts that provide no useful distinction are merged. In
figure 2 uses alphabet A = {a, b, c} and the context set (defined over A4*) is
C = {aa,ba,ca,b,c}.

Estimating a context tree source consists of counting the number of occur-
rences in the training sequence of all possible subsequences of length less-than
or equal to some maximum order. Counts are arranged in a tree analogous to
Figure 2 but with histograms also at interior nodes. The second estimation
stage consists of examining the accumulated tree and selecting a particular
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Fig. 1. Model optimality is attained by parameter fitting and parameter reduction.

Figure 2: Context tree Figure 3: The traditional pa-
source. Tree leaves show con- rameterization specifies the same
ditional distributions of =1 memory for every context (here
where the conditioning se- 2). The number of parameters
quence, T, T,_1, 1S repre- required to represent the same
sented by the path that leads source as Figure 2 increases from
to the leaf. 10 to 18.

best tree by merging contexts or pruning. Context tree pruning [10] is optimal
in that if the true data source is a context tree source then the negative-log-
probability (or compressed size of x in bits) that CTP assigns to its own
training sequence is within O(1) of the best-achievable lower bound [11]. For
sufficiently long training, CTP is able to discover the correct set of contexts
C with probability one and to estimate 6 with high accuracy.

For every context tree source (C,#), there exists an equivalent first-order
Markov chain (S, P) whose states s € S also correspond to short sequences in
A* and transition probabilities (P);; are determined by 6. For example, if z,,
is a binary sequence (A = {0, 1}) from a context tree source then the Markov
chain state space might be S = {11,10,0} and we say the second Markov
state “occurs” at time n if the channel states satisfy z, = 1,2,-1; = 0.



3 Fading Model

The classical Clarke model is adopted in simulating the baseband fading
process f(t). The in-phase and quadrature fading processes f.(t), fs(t) are
both assumed to be Gaussian, stationary and uncorrelated. The expression
of power spectrum for both of them is the following:

o? 1
27TfD 27f0r|f|<fD
S(f) = w/l—(%) (1)
D
0, otherwise
where o2 = 1 is process power, fp = % is the maximum Doppler shift,

v is the mobile speed, and A is the carrier wavelength. The corresponding
autocorrelation function is R(7) = 02 Jo(27 fpT), where Jy(-) is zeroth-order
Bessel function of the first-kind.

We assume in the example of §4 that the in-phase and quadrature pro-
cesses are zero mean, so that the resulting fading process is Rayleigh type,

i.e. the real envelope f(t) = | ft) | follows the Rayleigh distribution:

pr) = e (-5 @)

4 Context Tree Approximation for Rayleigh Fading
We begin by sampling the fading envelope f = {f(kT)}}=>° _ with sampling
period T to construct a vector, f, of measurements. Let the sampled fading
envelope f be quantized on L — 1 levels {A1, Az, ..., Ar_1}, forming an L-
valued discrete-time process:
L—1
zi =Y 1[fi > Ay] ®3)

k=1

where 1[cond] is the indicator function, that equals 1 if cond is true, else 0.
Now zj defines the channel state at time k and lies in the alphabet A =
{0,1,..., L —1}. For example, we might define a binary process by choosing
A; to be the minimum acceptable channel gain; then z; = 0 implies a fading
state and z; = 1 implies an acceptable channel state, as in the Gilbert—Elliott
model [2, 3].

A long sequence of real or simulated fading samples { fi}ﬁil allows us to
construct a quantized sequence x = {xz}fil and then to estimate a context
tree source, (6 (x),g(x)) from x. If there exists a finite C that describes the
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source of x, then C(x) will grow in size as N increases, and finally stop at the
correct context set C. But if x is not a finite order Markov process, the models
will continue to grow in complexity as the length of the training sequence
grows. An arbitrary degree of approximation can be therefore achieved by
using an arbitrarily long training sequence.

The data compression optimality of CTP may be rephrased that CTP
discovers the simplest possible model that describes the data with a given
fidelity. Let us select some very large N and carry out the simulation and
estimation for process x. Before C(x), there exists an increasing list of context
sets ) =Cop C C; C C (x) and their corresponding parameters 6y, 61, . .., 0x.
For each k, (Ck,6k) is the best (dim ;)—parameter Markov model — best in
the probability assignment sense (information distance). But the assignment
of probabilities to sequences is the fundamental task of a random process,
therefore a model that approximates well in this sense, approximates well in
every sense (heuristically).

However, information distance may not be appropriate for our approx-
imation task, we therefore re-evaluate the models based on a task-specific
distance measure. Let a € A be a fading state of interest, we define the so-
journ time 7, as the number of consecutive steps in which process x remains
in state a having just entered a. For discovering the interactions between pro-
tocol design and channel memory, the distribution of sojourn times in each
channel state obtained from the model must match that of the actual chan-
nel. Let D(-,-) be the distance between these two distributions. Let G¥(n) be
Pr[r, < n] for a context tree source (Cg,6). We would like to measure the
fidelity of the k-th model by how closely the cumulative distribution function
G*(n) approximates Pr[r, < n], i.e. D(G¥(n),Pr[r, < n]). But we have only
the sequence x and therefore we use D(G¥, H,) where H,(n) is the empiri-
cal estimate of Pr[r, < n] from sequence x. (N is chosen very large so that
H,(n) = Pr[r, < n].) The Kolmogorov distance

D(G* H,) = sup |G§(n) — Ha(n)| ,

is here adopted as a measure of deviation between the two distributions.

As the channel state x; = a may be a union of states of the Markov chain
represented by the context tree, the sojourn time in a is not geometrically
distributed (as would happen if a were a state of Markov chain), but has
a more complicated distribution, that can be algebraically evaluated. This
property enables context tree sources to approximate sources that have non-
trivial sojourn time distributions [13, 14].

Figure 5 shows the context tree source fitted to N = 10° samples of a
fading sequence whose two levels are defined by fade margin F' = 8 dB. The
fading rate is fpT' = 0.1. Figure 6 shows the number of parameters of context
trees fitted to 10° samples of fading sequences from slow, intermediate, and
fast fading regimes and using a range of fade margins. It can be observed that
the CTP algorithm finds first-order markovian behavior of the fading for the



lowest value fpT = 0.0125, corresponding to slow fading, and the substan-
tial memoryless behavior for the highest value fpT = 0.3, corresponding to
fast fading. Intermediate fading with fpT = 0.1 gives rise to more complex
models, but the complexity decreases with fade margin.
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Figure 5: Context tree fitted to Figure 6: Number of parameters of
103 samples of quantized fading the “best” Markov model fitted to
with fpT = 0.1 and fade mar- data with CTP versus the fade mar-
gin F' = 8 dB. gin for different values of fpT'.

Figure 7 shows the empirical sojourn time distribution for being in chan-
nel state 0 or channel state 1. Figure 8 shows how the Kolmogorov distance
varies with model size. It can be noted that the reduction of model com-
plexity from 7 parameters to 6 parameters does not introduce substantial
degradation to model behavior. If only channel state 1 is of interest, then
even a 4—parameter model appears to provide satisfactory approximation.

5 Discussion

A method and tools have been introduced that allow straightforward con-
struction of finite state models for the mobile channel fading and objective
comparison between models. Using context tree pruning on a large sample
obtained from the target random process provides a hierarchy of models with
increasing numbers of parameters. Each model may be considered “best”
among models with that degree of complexity. The choice of a particular
model leads to state definitions and transition probabilities for the approx-
imating Markov chain. To select a particular model, the designer must pro-
vide a measure of fidelity and make their own choice of what is an acceptable



ol T
VI -
o) e
£ e
cosf 1
S ’
B=X /
o /
R o Chamndaaes
o O z I I I I I I I
0 10 20 30 40 50 60 70 80

sojourn time, T [steps]

Fig. 7. Cumulative distributions (Ho(n), Hi(n)) of sojourn time in channel state 0
and 1 estimated from quantized fading with fpT = 0.1 and F = 8 dB.
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Fig. 8. Kolmogorov distance between the estimated distributions (Ho(n), H1(n))
and the distributions obtained from context tree models that are subsets of the
7-parameter model shown in Figure 5 (versus dim6).

compromise between fidelity and complexity. The method was demonstrated
using Rayleigh fading quantized to two values and as a fidelity measure the
Kolmogorov distance between sojourn time distributions for the approximat-
ing model and an estimate of the “true” model. But the method extends
readily to other fading models, finer quantization, and any distance measure
that the designer deems appropriate. The best finite order Markov models
that represent various fading regimes of interest have still to be cataloged.
In future work we will consider the possibility of using significance level as a
fidelity criterion [15].

The high speed associated with future wireless access systems will increase
the effects of channel memory. Systems that ignore memory by accommodat-
ing the worst case will be conservative designs that lose significant capacity
as a result. Systems that are not conservative in that way will nonetheless
become more fragile in operating regimes where channel memory is evident.



In much work with Markov models for fading, the model is chosen for its
simplicity and later justified. We have provided a tool that allows designers
to measure the channel memory. Such a tool may prove very useful for the
design, optimization, and performance assessment of communication systems
over Markov channels that have unknown memory.
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