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Capturing Important Statistics of a Fading/Shadowing
Channel for Network Performance Analysis

Young Yong Kim and San-qi Li,Member, IEEE

Abstract—In this paper we identify important characteris-
tics of a fading/shadowing channel and present the work of
measurement-based channel modeling for packet-level network
queueing analysis. Our integration of wireless channel modeling
and data queueing analysis at the packet-level provides a unique
approach to study the effect of various channel dynamics on high-
layer network performance, which otherwise cannot be captured
through the traditional bit-level physical-layer channel modeling.
In our study, the channel statistics are decomposed into three
frequency regions [i.e., low (LF), mid (MF), and high (HF)]; the
statistics in each frequency region is found to have significantly
different impact on the queueing performance. While the HF
statistics can be largely ignored in channel modeling due to their
negligible impact on queueing performance, the LF statistics play
the most important role in channel modeling because of sub-
stantial impact on queueing performance. Since the shadowing
mainly represents the LF behavior of a channel, its dynamics
are found to have a dominant effect on network performance as
compared to the effect of multipath fading dynamics. In wireless
networks, there are many other system factors which may change
the channel dynamics, such as mobile user driving patterns,
and forward-error-correction (FEC) coding (fixed or adaptive)
using automated repeat request (ARQ) scheme. Our study further
examines the individual impact of these factors on the network
performance. In the measurement-based channel modeling, we
use a Markov chain modeling technique to match the important
channel statistics for queueing system analysis. The study shows
an excellent agreement in queueing solutions between using the
real original channel traces and using the sequences generated
by the matched Markov chain models.

Index Terms—Channel modeling, multimedia communication,
multipath fading, queueing analysis.

I. INTRODUCTION

EARLY WORK in wireless channel modeling focused on
the stochastic modeling of channel dynamics at physical

layer, measured by received signal strength or bit error rate
(BER) [1]–[6]. Such physical-layer models cannot be directly
used to evaluate high layer network performance, such as
packet queueing delay and loss. For instance, a few bit errors
within a packet, which is the basic data unit at the wirelesslink
layer, will cause the entire loss of the packet. Further, a single
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packet loss within a message, which can be the basic data unit
at the end-to-endnetwork layer, will cause the entire loss of
the message as defined by many network control protocols.
It is therefore imperative to develop sophisticated packet-
level wireless channel models, which can be used by network
engineers to simulate and analyze the high-layer performance
in wireless network protocol development. Limited work is
available on packet-level wireless modeling [7]–[10]. One
commonly adopted method is to use two-state Markov chain
to match the average ON (success) and OFF (loss) periods of
packet transmission measured on a multipath fading channel
[8]. Note that it is unlikely to develop a generic stochastic
model for capturing the great diversity of wireless channel
dynamics, which are time-varying, frequency-selective, and
highly dependent on many other system factors such as noise,
distance, mobile speed, multipath interference, power control,
coding, etc. In other words, a successful modeling technique
must be measurement based to capture real channel statistics
under various conditions. To make this modeling feasible, our
first objective is to identify what are the important statistics
of fading channel to packet-level network performance. In
this paper, shadowing is defined as the signal attenuation
by irregular terrains, which occurs over large area and large
time scale, and multipath fading is defined as the signal
attenuation by moving receiver such as Rayleigh and Rician
fading. Our recent study of multipath Rayleigh fading channel
dynamics [11] indicates that the queueing performance can be
strongly affected by the second-order statistics of multipath
fading in low-frequency (LF) region. Further, the queueing
performance is largely dependent on the interaction between
channel power spectrum and data arrival power spectrum,
whichever has more LF power will have dominant impact on
the queueing performance. Note that the data arrival power
spectrum provides the measure of data arrival correlation
behavior. In this paper, we investigate the impact of multipath
and shadowing fading channel dynamics on the packet-level
data queueing performance.

The channel dynamics at the packet level is represented by
a data packet service rate process , which in general can
be considered as a stationary random process. For simplicity,

is also referred to as the channel process. It is difficult
to obtain an exact description of and only its statistics
are measurable. The first-order statistics are described by
the steady state probability density function or cumulative
distribution function (CDF). The second-order statistics are
specified by the autocorrelation function or power spectral
density function (PSD). Comparatively, higher order statistics
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Fig. 1. Wireless multimedia queueing system.

as characterized by bispectrum and trispectrum are more
difficult to measure. Let us consider a queueing process
with finite buffer capacity as shown in Fig. 1, whose service
process is and buffer capacity is measured in packet
units. The data arrival process is also a random rate
process, which may represent a multimedia traffic stream with
its own measured statistical properties. Using the fluid flow
assumption, one can describe the queueing process by

(1)

where is the queue length at timesubject to
. Given the channel transmission capacitymeasured in

packet units at time interval and the error probability per
packet at time denoted by PER , we define

PER (2)

Hence, the statistics are simply a shifted, normalized
version of the PER statistics. The average channel capacity is
given by PER . Similarly, may represent
the number of packet arrivals at the time interval .

Most queueing analyses of multimedia traffic so far have
focused on wireline networks such as ATM, where the service
rate is assumed to be constant. Under the assumption of a
constant service rate, the studies in [13]–[15] indicate that only
the first- and second-order statistics of the arrival process are
important to steady-state queue length and loss rate solutions,
whereas its higher order statistics can be neglected, given a
properly selected frequency range for the measurement. Most
importantly, the queueing performance is mainly governed by
LF behavior of the arrival process. That is, higher energy
of the arrival process in LF bands means requirement of
more buffer capacity and/or larger link bandwidth for packet
transmission. In real networks, most multimedia traffic streams
exhibit high energy located in LF bands, which is equally
described by large time-varying scale, high correlation, or long
range dependence.

Intuitively, one may characterize a queueing system by
a nonlinear low pass filter, where the HF variation of the
input traffic can be well absorbed into the buffering but
its LF variation remains largely unchanged [16], [17]. For
instance, the lowest frequency component of the traffic, i.e.,
the DC term, is its average arrival rate, which always stays
intact through a queueing system unless with traffic loss by
buffer blocking. Moreover, such low-frequency behavior of
the traffic will remain largely unchanged through a network
of interconnected queues [18].

The queueing analysis in wireline networks can be extended
to wireless. Essentially, the effect of the service rate statistics
is the same as the effect of the arrival rate statistics on the
queueing process. For instance, if we define

where is the maximum of , the queueing process can
be described by

(3)

It is obvious that plays the same role as in the
queueing process. The statistics of are just a “shifted”
version of the original statistics. Therefore, only the
first- and second-order statistics of the fading channel need
to be measured and captured, especially in the LF band. The
queueing performance depends on the interplay between chan-
nel and arrival statistics. If the arrival process contains much
more LF energy than the channel process, one may completely
ignore the channel statistics in modeling because the queueing
performance is governed by the arrival statistics, and vice
versa. Our study then focuses on the comparison of channel
PSD and arrival PSD in LF band under various circumstances.
Once the channel is identified to contain significant LF energy
as compared to the arrival process, both first and second-order
statistics in LF are important for the channel modeling in
queueing analysis.

In [14], the input traffic characteristics is decomposed into
three frequency regions (LF, MF, and HF) and the traffic
statistics in each individual region is found to have signif-
icantly different impact on buffer capacity and transmission
bandwidth requirement. Based on the same principle, one can
divide channel dynamics into the three frequency regions and
similarly examine the impact of the shadowing and multipath
fading. It is obvious that the queueing performance depends
on the combination effect of arrival and channel statistics. Our
study indicates that the LF and MF arrival/channel statistics are
most important to capture in modeling due to their substantial
impact on the queueing performance. In contrast, the HF
arrival/channel statistics can be largely ignored because of
their negligible impact on queueing performance. Since the
shadowing mainly represents the low-frequency behavior of a
channel, its dynamics are found to have dominant effect on
network performance as compared to the effect of multipath
fading dynamics. Moreover, the shadowing fading dynamics
are strongly dependent on many other system factors, such
as mobile user driving patterns and forward-error-correction
(FEC) coding (fixed or adaptive) using automated repeat
request (ARQ) scheme. Our study further examines the in-
dividual impact of these factors on the network performance.
The fading channel statistics in the downtown Austin area is
used as an example of a typical large scale fading scenario
in this paper.

Similar to the modeling of the arrival process, one can use
a measurement-based modeling technique [13], called SMAQ,
to build a Markov modulated process (MMP) to match the
measured first- and second-order channel statistics. An MMP
process is defined by both rate vectorand Markov chain
transition rate matrix . While defines the service rate [or,
arrival rate in case of ] in each state, characterizes
the time dynamics of the rate process. For modeling,
the service rate is assumed to be exponential in each state.
For modeling, the arrival rate is assumed to be Poisson
in each state. Since both and are independently
modeled by MMP, the queueing system is formulated as a
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finite quasi-birth–death process, which can be numerically
analyzed by the Folding algorithm [19]. Note that MMP
has been commonly adopted for service and arrival process
modeling in queueing fields.

One may further decompose the arrival process into a
number of independent data sources. Since the emphasis of this
paper is placed on the channel modeling, we simply assume
that each data source is modeled by an i.i.d. two-state MMP,
alternating between ON and OFF periods. Each exponential
ON period represents the generation of a single message
consisting of multiple packets. While in ON period, packets
are generated at a Poisson rate. Each OFF period represents
the inactive time interval between two adjacent message gen-
erations. Note that the superposition of independent MMP’s is
still an MMP. As one will see, our queueing solutions based
on the modeling match well with the simulation results using
the original wireless channel trace.

The remainder of the paper is organized as follows.
Section II explains our measurement-based channel modeling
framework. Section III investigates the queue response to
various fading channel dynamics, using both computer
simulation and analytical modeling techniques. Section IV
is the conclusion.

II. CHANNEL AND ARRIVAL STATISTICS

A. Channel Statistics at Signal-Strength Level

Channel fading behavior can be classified into shadowing
dynamics and multipath fading dynamics [20]. The shadowing
dynamics describes the signal attenuation due to the motion of
a mobile station over a large irregular terrain. The multipath
fading dynamics captures the signal attenuation by multiple
versions of transmitted signals arrived at a receiver with
small changes in position. In general wireless communication
environments, both shadowing and multipath fading, manifest
themselves simultaneously where shadowing defines average
path loss at a certain position with log-normal deviation from
the mean, and multipath fading introduces further fast variation
of received signal strength [20]. Let be the impulse
response of a fading channel. One can then decompose the
magnitude of into two parts

(4)

where and are the attenuation of shadowing and
multipath fading, respectively.

Because of the highly variable wireless fading environment,
any realistic channel modeling must be measurement-based.
As an illustrative example, our study is based on the real
fading statistics collected in the downtown area of Austin City
at 1.9 GHz with continuous wave (CW) [21]. Fig. 2 shows a
simplified map of the measurement coverage in the downtown
Austin area. The base station is located at Congress and 7th
Street. The car was driven at normal speed on every street in
the map to collect the CW attenuation at 1 ms interval. The size
of area covered by the measurement is approximately 400 m
in diameter.

Fig. 2. A simplified map of downtown Austin area.

Fig. 3. Measured signal attenuation in downtown Austin area.

Fig. 3 shows an example of short segment of time series
of attenuation in the downtown Austin area. This segment
represents a drive along one street (Trinity). The attenuation
in Fig. 3 are relative values and do not represent the actual
received signal strength. Both shadowing and multipath fading
are included in the measurement.

B. Channel Statistics at Packet Level

One can use the collective fading profile at signal-strength
level to generate various kinds of time series of packet error
rate, PER , given the system conditions such as modulation
method, packet size, and error correction coding schemes. The
statistics of PER provides the probabilistic description of
the packet loss process.

Denote the average bit energy of the received signal by
and the noise power density by , within a cell. Assuming

is normalized, the received bit-energy-to-noise-ratio
time series is then represented by

SNR (5)

Based on a given channel modulation scheme, one can convert
the signal-to-noise ratio (SNR) time series to bit error rate time
series (BER). In our study, we assume to use the ideal
QPSK modulation scheme, such that one can write [22]

BER Q SNR (6)
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Fig. 4. Frame structure.

where Q is defined as

Q (7)

The conversion from the BER time series to packet error rate
time series (PER) is further dependent on its selected channel
coding scheme. Without error correction coding

PER BER (8)

where is the number of bits in a packet, including error
detection coding bits if any. If an error correction code is
employed with capability of correcting up to bit errors

PER BER BER (9)

One assumption made in (8) and (9) is that the fading time
variation is slow as compared to the packet transmission time,
such that BER remains virtually unchanged during a packet
transmission time. In other words, we take the average of the
original SNR in each adjacent packet transmission interval
to generate the packet-level BERtrace. This assumption has
been verified by comparison of the queueing solutions between
the original bit-level BER trace and the averaged packet-level
BER trace in [11]. It is also intuitively clear since the bit-level
BER variation only contributes to the high frequency behavior
of the channel statistics, which has negligible impact on the
queueing solutions as one will see in Section III-B.

PER gives the probability of packet loss at timeon the
channel. Assume to use a time division multiplexing access
scheme on the wireless network, where each time frame is
divided into a fixed number of slots and each slot represents a
channel to transmit one packet per frame. Using the frequency
division duplex (FDD) scheme, both upstream and downstream
links will have a different frequency bandwidth. Here we only
consider the data queueing process associated with a single
channel. A packet will stay in the queue at the transmitter until
it is successfully received and acknowledged by the receiver.

According to the standard stop-and-wait ARQ flow control
scheme, a new packet will not be sent out until the previous
packet has been successfully acknowledged by the receiver.
Since the packet propagation time in a typical wireless en-
vironment is substantially shorter than the frame size, it is
reasonable to assume that, before the next time slot becomes
available, the transmitter will know if the packet transmission

Fig. 5. Infinite mirrored cell model.

in the current slot is successful, as described in Fig. 4. In other
words, the same packet will be retransmitted in the next time
slot if it fails in the current slot with the probability PER.
In our study, we assume four time slots per frame as in Fig. 4.
We further adopt thetype IARQ scheme [23] where both FEC
coding and ARQ control scheme are used to achieve better
throughput and more reliable communication.

The data packet service rate process is therefore defined by

PER (10)

where is the frame interval, since there is one packet
transmission on each channel per frame. The statistics
is just a shifted, normalized version of the PER statistics. The
average channel capacity is given by

PER (11)

C. Channel Statistic Measurement

To use the fading sequence collected over a single cell
for generic network analysis, we further assume an imaginary
infinite size cellular system where all cells have same dimen-
sion, size, and attenuation characteristics as our measurement
area in downtown Austin. Fig. 5 depicts the concept of our
imaginary cellular system. Note that adjacent cells have the
same attenuation characteristics which are mirrored images
of each other with respect to the cell boundaries. On this
imaginary cellular system, we consider two driving patterns:
directional versus random. Each time when a mobile user is at
a cross section of the street, it turns left with probability,
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(a) (b)

(c) (d)

Fig. 6. Channel PSD with directional driving pattern. (a)Eb=N0 = 20 dB.
(b) Eb=N0 = 30 dB, with random driving patten. (c)Eb=N0 = 20 dB. (d)
Eb=N0 = 30 dB.

turns right with or goes straight on the same street with.
For the directional driving, we assume , ,
and . For the random driving, .

In the power distribution, we consider two average SNR
levels in each cell, defined by dB and 30 dB.
In the selection of channel coding schemes, we assume to use
the Reed–Solomon code where the number of correctable bit
errors in each packet can be set at 0, 20, 50, or 100. Of
course, the coding overhead increases with[23]. We further
fix the channel speed at 1.92 Mbit/s and the size of each packet
at bits, which includes the coding bits for
error correction. Based on these conditions, one can use the
original SNR trace, collected in the downtown Austin area,
to generate various traces and so to collect the statistics
of . We use 14 h of sequence for simulation and
analysis throughout the paper.

Fig. 6(a) and (b) shows the PSD of in the directional
driving at , and 100, with respect to
dB in Fig. 6(a) and 30 dB in Fig. 6(b).1 Clearly, increasing

has the effect of reducing channel PSD because of the
improved packet success rate, but this is achieved at the
expense of its much reduced number of user information bits in
each packet, which is equivalent to the reduction of effective
channel capacity. The inspection of Fig. 6(a) and (b) shows
that increasing also has the effect of reducing channel
PSD at each given , which is obvious due to the improved
bit error rate performance within the cell. Note that while the
average of increases with the increase of or

, the variance and total power of decreases with the
increase of or . Yet, increasing in this cell will
also cause the increase of its noise level in the neighborhood
cells, which is not considered in our study.

1For the purpose of comparison between the service PSD and the arrival
PSD in queueing analysis, both power spectra and their frequency need to be
normalized by the average channel capacity. See [24] for details.

Similar performance is observed in Fig. 6(c) and (d) in the
random driving. As compared to the directional driving in
Fig. 6(a) and (b) the random driving reveals much increased
LF energy at each given and . This is because in our
particular example the random driving tends to stay longer
in the vicinity of a certain area as compared the directional
driving, thus increasing the autocorrelation of the signal at-
tenuation over time. Note that such a power comparison can
be changed with different driving patterns. For example, if we
have , , and for directional driving,
which represent mostly turning right at each cross section, we
will stay longer in the vicinity of a certain area compared to
the above mentioned random driving pattern. Our main point
here is that driving pattern can change the channel dynamics
as well as queueing performance as we will soon observe.

One may find that the channel PSD has a significant amount
of energy in its LF region, which is mainly contributed by
the shadowing dynamics. The energy of multipath fading
dynamics spreads out over a much larger frequency region.

D. Decomposed Channel Statistics

According to the work in [14], one can decompose the
traffic dynamics into three frequency regions: LF region in

, HF region in , and MF region
in . The study in [14] further gives the
engineering guideline
for the frequency division in measurement. is the maxi-
mum queueing delay in the fluid-flow queueing model, given
by where is buffer capacity and is the average
service rate. The main result in [14] has the following practical
implications. For the LF traffic, one only needs to measure
the first-order statistics (CDF), especially the tail portion of
its distribution. For the MF traffic, both first- and second-
order statistics (CDF and PSD) are important to measure for
queueing analysis. For the HF traffic, no statistics need to
be measured since the buffer perfectly absorbs its dynamics.
The extension from traffic dynamics to channel dynamics is
straightforward.

By capturing the only important channel statistics, one can
build a simple but accurate channel model for queueing anal-
ysis of wireless multimedia transmission over fading channel.
For instance, if the channel PSD contains most energy in the
LF region, we only need to build a channel model to match
the CDF without loss of queueing solution accuracy. On the
other hand, if the channel PSD contains most energy in the
HF region, one can neglect the entire channel dynamics in
modeling. Only when the channel contains significant amount
of energy in the MF region, the channel model must be built
to match both CDF and PSD.

E. Packet Arrival Statistics

As commonly observed in traffic measurement, most mul-
timedia traffic streams have their energy highly concentrate
on LF band, which is attributed to the long range dependence
or large time-varying scale of packet arrivals. Fig. 7 shows
such examples as collected from typical Ethernet data trace
and JPEG video trace. One can use the techniques developed
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(a) (b)

Fig. 7. Power spectrum of (a) Ethernet and (b) JPEG traces.

in [13] and [15] to build a Markov chain modulated process
to match such statistics.

For simplicity, here we assume that the data arrival process
consists of independently, identically, distributed (i.i.d.)
sources, each of which may represent a virtual connection on
the channel. In this study we take . Each data source
is modeled by a two-state Markov chain, defined by

(12)

and are the average of the exponential ON- and
OFF-periods, is the Poisson packet generation rate while
in ON-period, and is the probability in
ON-period. While defines arrival rate in each state,
characterizes the time dynamics of the rate process.is the
steady state probability distribution of the chain. One may
associate each ON-period with a message generation time.
The power spectrum of the aggregate sources can then be
expressed by

(13)

with

(14)

The impulse term in (13), , represents the DC which
is contributed by the nonzero average arrival rate. The
constant term, , corresponds to the white noise effect of
Poisson local dynamics in packet generation [12]. The last
term in (13), which is our major interest, has the bell shape
centered at zero frequency with its half power bandwidth given
by and the average power equal to the arrival rate variance

.
Three conditions are required for the two-state Markov

chain design and to fix the arrival PSD. They can be taken
from the source peak rate , source average rate, and
average message size . Here we fix at and at

PER for each given . In reality, the message
size varies largely depending on applications. Increasing mes-
sage size expands the correlation of packet arrivals, which
is equivalent to increasing the LF power. Mathematically,
increasing message size has the effect of reducing the bell
bandwidth while keeping the average power unchanged. As a
consequence, the arrival energy will concentrate more on the
LF. We assume 500 packets per message on average in this
paper.

III. QUEUENIG RESPONSE

Here we investigate the queueing response to channel dy-
namics under various conditions, especially with respect to
different driving patterns and fixed/adaptive channel coding
schemes. To help us understand the role of channel PSD
played in queueing performance, we first review the effect
of multipath fading dynamics analyzed in [11]. In the study
of queue response to shadowing and multipath fading dy-
namics, our focus will be on the identification of important
channel statistics. A Markov chain modeling technique will
then be presented to match such important channel statistics
for network analysis.

A. Queueing Response to Multipath Fading

The study of the queueing response to multipath Rayleigh
fading channel statistics in [11] reached two major con-
clusions. First, the channel PSD plays an important role
in queueing analysis. Second, the queueing performance is
strongly dependent on the interplay between arrival PSD
and channel PSD, whichever has more LF energy will have
stronger impact on the queueing solutions.

One of the most frequently used packet-level wireless
channel model is a two-state Markov chain alternating be-
tween ON- and OFF-periods [8]. The average ON-period
(OFF-period) is designed to match the average run length of
consecutive packets which are successfully (unsuccessfully)
transmitted. The statistical functions matchable by two-state
Markov chains are rather limited. Its PSD function consists
of a single bell component centered at the zero frequency;
its CDF function only allows a single nonzero service rate in
each ON-period. In contrast, one can use the SMAQ technique
developed in [13] to built a multistate Markov chain to match
both PSD and CDF functions in rather complicated forms,
as done in [11]. Let us compare these two different channel
modeling techniques in study of multipath fading channel
dynamics for queueing analysis. Consider a multipath fading
channel system, running at 2 Mbit/s rate with dB
and taking no error correction coding (i.e., ).

The thick solid line in Fig. 8(a) shows the original channel
PSD collected from an trace which is converted from the
channel fading trace generated by the Jakes’ method [25]. The
same trace is used in computer simulation to obtain the original
average queueing performance as a function of, displayed in
Fig. 8(b). The queue performance is measured in packet units.

The same channel fading trace is used to collect the average
run lengths which are then applied to the construction of a
two-state Markov chain model. The thin solid line in Fig. 8
shows the corresponding channel PSD and queueing solutions
using the two-state Markov chain model. As compared to the
original results, such a modeling can severely underestimate
the LF energy of the channel, which is why the average queue
length becomes significantly underestimated. For comparison
purposes, we use the SMAQ tool to generate various Markov
chain models to match the channel PSD in different degrees.
Refer to the Appendix or [13] for the detail. For instance,
one such Markov chain model has been designed to well
match the LF channel PSD as shown in Fig. 8. Since the
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Fig. 8. Effect of PSD mismatching.

(a) (b)

(c) (d)

Fig. 9. Combination effect of channel PSD and arrival PSD. (a) 48 Kbit/s.
(b) 8 Mbit/s. (c) 48 Kbit/s. (d) 8 Mbit/s.

queueing performance is mainly governed by the LF behavior
of the channel, its average queue length is found in excellent
agreement with the original one. For comparison purposes,
we have constructed two additional Markov chain models.
One of them undermatches the LF channel PSD while the
other overmatches the LF channel PSD. As one can see in
Fig. 8, the undermatched model leads to the queue length
underestimation while the overmatched one leads to the queue
length overestimation. Notice that all three Markov chain
models, generated by the SMAQ tool, share the same average
power and CDF. In other words, the first-order statistics of
these three Markov models are identical. This example clearly
indicates the importance of matching LF channel PSD in
channel modeling to queueing performance analysis.

In the above example, we purposely designed the arrival
PSD significantly less than the channel PSD, especially in
the LF band. Hence, the queueing performance is mainly
determined by the channel PSD. In general, the queueing
performance should depend on the combination effect of the
channel PSD and the arrival PSD in the low frequency band.
To explore this idea, we consider two extreme cases. One
case has a low-speed channel running at 48 Kbit/s; the other
has a high-speed channel running at 8 Mbit/s. The rest of the
channel conditions and the arrival statistics remain unchanged
as in the above. The corresponding channel and arrival spectra
of the two channels are plotted in Fig. 9(a) and (b). A high-

speed channel contains much more LF energy than a low-speed
channel. The arrival PSD remains unchanged by the channel
speed.

In the low-speed channel case, since the arrival PSD has
much more LF energy than the channel PSD, the queueing
performance should be mainly governed by the arrival PSD.
In other words, one can completely ignore the channel spectral
statistics in channel modeling and use a simple stochastic
model like exponential server in queueing analysis. This is
verified by the comparison of the queueing performance in
Fig. 9(c) between the original channel trace and the expo-
nential server model. In the high-speed channel case, the LF
channel PSD can no longer be neglected by channel modeling.
Otherwise, the queueing performance will be significantly
underestimated as described in Fig. 9(d).

The study reveals the importance of comparing arrival PSD
with channel PSD in the channel modeling. In principle, the
channel dynamics need to be considered by channel modeling
if and only if the LF channel PSD is comparable to the arrival
PSD.

B. Queueing Response to Shadowing and Multipath Fading

The shadowing and multipath fading dynamics contribute to
the channel statistics in greatly different ways. The multipath
fading is mainly caused by the motion of receiver and its
variation is governed by the maximum Doppler frequency shift
given by where is mobile speed and is the
wavelength [2]. In the scenario considered in the downtown
Austin area, where mobile speed is less than 30 Kmph and
carrier frequency is 1.9 GHz, the maximum Doppler frequency
shift is in the range of around 50 Hz. In contrast, the shadowing
occurs due to the irregular terrain and path loss. In a downtown
area, the shadowing is mainly contributed by the buildings.
The time scale of variation of shadowing is typically in the
range of a few tens of second to a couple of minutes. In other
words, much of the shadowing energy concentrate on a very
LF band, typically less than 0.2 Hz.

Based on this inherent energy separation between the shad-
owing and multipath fading in the frequency domain, one can
further compute the average multipath fading energy versus
the average shadowing fading energy from the collected down-
town Austin trace. For instance, the average multipath fading
energy is found 1.3 times greater than the average shadowing
energy under the condition dB , or 28
times greater under the condition dB .
Although the multipath fading has much more energy than
the shadowing, it is relatively evenly distributed over a much
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(a) (b)

(c) (d)

Fig. 10. Effect of multipath fading in the presence of shadowing given
(Eb=N0;m) equal to (a) (20 dB, 0), (b) (30 dB, 0), (c) (20 dB, 50), and
(d) (30 dB, 50).

wider frequency range. In contrast, the highly concentrated
energy distribution appeared in the LF band, as observed in
Fig. 6, is solely attributed to the shadowing.

Similar to the effect of arrival PSD studied in [14], the
queueing performance is expected to be much more affected by
the LF channel dynamics (shadowing) as compared to the HF
channel dynamics (multipath fading). This is because the HF
variation of the channel service rate can be largely absorbed
through the buffering system. To verify the dominance of
shadowing dynamics in channel statistics, one can take the
moving average operation to the original downtown Austin
trace at every one second interval, such that the new filtered
trace contains no multipath fading dynamics. Fig. 10 compares
the simulation results of the queue distribution using both the
original trace and the filtered trace given the buffer capacity

and the system loading factor , over a wide
range of selection of and . One can hardly observe
queueing difference between the two traces. In other words,
one can completely ignore the multipath fading dynamics in
the presence of shadowing for queueing analysis.

C. Queueing Performance to Various Factors

Given the assumption of the cell size of downtown Austin
as in Fig. 2, here we examine the effect of driving patterns
and buffer capacity on the queueing performance.

Let us replot Fig. 6(a) and (c) for the channel PSD of
the directional and random drivings in Fig. 11(a) and (b)
using the radian frequency unit. According the frequency
decomposition concept in Section II-C, the channel PSD can
be further divided in LF, MF, and HF regions. The HF channel
PSD has been largely ignored in Fig. 11(a) and (b) due to its
negligible impact on the queue. The bound between the LF
and MF regions is defined by . is the
maximum allowable queueing delay which is dependent on
the buffer capacity and average channel service rate. For

(a) (b)

(c) (d)

Fig. 11. Channel PSD with LF cutoff frequency. (a) Directional. (b) Random
driving patterns and channel CDF withEb=N0 = 20 dB. (c) m = 20: (d)
m = 100.

(a) (b)

(c) (d)

Fig. 12. Channel PSD versus Arrival PSD for(Eb=N0;m) equal to (a) (20
dB, 0), (b) (30 dB, 0), (c) (20 dB, 50), and (d) (30 dB, 50).

, we first take and ms, such
that s as shown by the vertical line in Fig. 11(a)
and (b) for the frequency division. One can find a significant
amount of channel energy located in the LF region. Note that
the channel CDF is independent of the driving patterns, which
is further verified through the measurement of the real traces
as compared in Fig. 11(c) and (d) at dB for

and .
In the queueing performance study, we consider four

channel scenarios, represented by the pair of parameters
equal to (20 dB, 0), (30 dB, 0), (20 dB, 50)

and (30 dB, 50), respectively. The channel PSD of the two
driving patterns is further compared in Fig. 12 at each given
scenario. Also plotted in Fig. 12 is the arrival PSD given the
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(a) (b)

(c) (d)

Fig. 13. Effect of driving patterns withK = 210 for (Eb=N0;m) equal to
(a) (20 dB, 0), (b) (30 dB, 0), (c) (20 dB, 50), and (d) (30 dB, 50).

assumption of average 500 packets per message, which is
negligible as compared to the channel PSD except in the last
scenario. In Fig. 13, the queue distribution of the two driving
patterns at are found in excellent agreement for all
the scenarios. One may question why the queueing solutions
are virtually identical given the significant difference in the
channel PSD of the two driving patterns. This is because a
large amount of channel energy is located in the LF region.
Recall in Section II-C, the important channel statistics in
the LF region are its CDF behavior, rather than the PSD
behavior. Since the CDF behavior of the two driving patterns
are basically identical, their queueing performance should
not be significantly different. In other words, the channel
modeling is sufficient to capture the CDF behavior in the LF
region when the energy in the MF region is insignificant.

Such a modeling situation may change as the buffer capacity
increases. For instance, let us increase the buffer capacity
from to , which leads to the 32 times
reduction of the boundary frequency in Fig. 11(a) and
(b). In consequence, much of the channel energy is now
shifted from the LF region into the MF region, such that
the MF energy becomes no longer negligible. This is why
the difference in the queueing solutions of the two driving
patterns now becomes significant as shown in Fig. 14, which
is mainly caused by the difference of the two channel PSD’s in
the MF region. Especially since the directional driving always
contributes less energy to the LF and MF regions as compared
to the random driving, its queueing solutions also tend to be
better than that of the random driving. For the last scenario
in Fig. 14, the queueing difference between the two driving
patterns is insignificant. This is because the arrival PSD, which
is independent of the driving patterns, is no longer negligible
as compared to the channel PSD.

Clearly, there are many system factors, such as the arrival
PSD, buffer capacity, and driving pattern, which can greatly

(a) (b)

(c) (d)

Fig. 14. Effect of driving patterns withK = 215 for (Eb=N0;m) equal to
(a) (20 dB, 0), (b) (30 dB, 0), (c) (20 dB, 50), and (d) (30 dB, 50).

change the effect of channel statistics in each frequency region
on the queueing performance.

D. Effect of Channel Coding

The LF channel dynamics (i.e., shadowing) are equivalently
described by the large time scale variation behavior of the ser-
vice rate. In other words, the more LF energy means the longer
period of channel congestion once it occurs. One may adopt a
proper error correction coding scheme to increase the success
probability of each packet transmission, but this is achieved at
certain expense of increased bandwidth overhead for coding.
In fact, the bandwidth overhead for coding may even offset
the bandwidth saving achieved by its increased packet success
probability. In other words, the effective channel bandwidth
and its associated queueing performance may even deteriorate
when an excessive error correction coding scheme is adopted.
Further, the coding theory is mainly developed using the
traditional independent assumption of error occurrences in
adjacent bits, whereas in reality they are highly correlated
as described by the strong LF channel dynamics. Hence,
the effectiveness of error correction coding in the shadowing
wireless environment needs to be carefully examined.

The implementation of error correction coding can be either
fixed or adaptive. While a fixed coding scheme is statically
assigned and independent of the present channel condition,
an adaptive coding scheme may dynamically select different
coding schemes based on the observation of the present
channel condition. The adaptive approach is expected to be
particularly effective and practically feasible to cope with the
slow time variation of the channel.

Consider the directional driving in a cell as in the previous
study. Fix and ms such that
s. Adopt the Reed–Solomon coding scheme at each given

except at . Fig. 15 shows the average queue
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(a) (b) (c)

Fig. 15. Effect of fixed channel coding. (a) Queue length. (b) Packet loss rate. (c) CDF.

(a) (b) (c)

Fig. 16. Effect of adaptive channel coding. (a) Queue length. (b) Packet loss rate. (c) CDF improvement.

length and packet loss rate based on the downtown Austin
trace for different at dB, using the fixed
coding scheme. The offered load in Fig. 15, denoted by,
is defined by the ratio of the effective data arrival rate (i.e.,
excluding the channel coding overhead within each packet) to
the total average channel capacity. Also plotted in Fig. 15(c)
is the channel CDF performance. One can only achieve the
maximum % at subject to the average queue
length of no more than 100 packets, versus 70% at
under the same queue length constraint. The selection ofis
dependent on the required packet queueing delay and loss rate
performance for quality of services. For instance, if the service
quality is mainly measured by the average queue length, one
should choose to achieve the minimum queue length
under the heavy load condition. On the other hand, if the
service quality is mainly measured by the average loss rate
subject to the loading condition %, one may choose

for the best loss performance. Note that the average
loss rate can never be less than 10for % by the fixed
coding scheme, no matter which is selected. In other words,
while a fixed coding scheme can significantly improve the
success probability of each packet in the channel congestion
period, its overhead also reduces the effective transmission
bandwidth in the channel noncongestion period.

This unbalanced issue can be overcome through either
adaptive power control or adaptive channel coding. In our
situation where the most deep fading occurs at the cell bound-
ary, the adaptive channel coding is certainly more effective
since the power increase at the cell boundary will increase
the interference to other cells. Hence, we only consider the
adaptive channel coding approach. For simplicity, we use a
two-level adaptive coding scheme based on the detection of
the present level as compared to a given threshold
SNR . If the present is greater than SNR, i.e., in

the noncongestion period, no error correction coding will be
implemented (i.e., ). Otherwise, the Reed–Solomon
coding scheme will be invoked with a preassigned. The
selection of SNR and is dependent on the combination
effect of the involved coding overhead versus the lost channel
bandwidth without coding. That is, the coding will be invoked
as soon as the lost channel bandwidth without coding exceeds
the coding overhead. We assume an ideal situation where the
present value is made available to the mobile user and
so the lost channel bandwidth without coding can be obtained
from the corresponding packet loss rate. The coding overhead
is also directly computable at each given. The optimal
SNR can then be identified.

In our case, we take 20, 50, and 100 for the
adaptive coding. Fig. 16 provides the corresponding queue
length and packet loss rate performance. For comparison
purposes, the results without coding at is also
displayed in Fig. 16. It is obvious that the adaptive cod-
ing achieves much better queueing/loss performance than
no coding. Also plotted in Fig. 16(c) is the channel CDF
performance. The inspection of Figs. 15 and 16 further show
remarkable throughput/delay/loss performance improvement
by the adaptive coding. This is mainly achieved by removing
the unnecessary coding overhead in noncongestion periods. In
general, the design of adaptive coding scheme is dependent on
various system conditions, including channel statistics, arrival
statistics, buffer capacity, and service quality requirement.

E. Measurement-Based Channel Modeling

So far our main focus has been on the identification of
important channel statistics for queueing analysis, which is
directly related to the interplay between channel PSD and
arrival PSD in the LF region. Let us now concentrate on
the Markov chain modeling of such channel statistics. It is
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Fig. 17. Markov chain modeling of channel with fixed coding atm = 20.

obvious that the Markov chain channel modeling is necessary
for queueing analysis if and only if the channel contains
comparable LF energy to that of the arrival process. The
SMAQ tool is used to build an MMP process, which can
simultaneously match both CDF and PSD of the fading
channel. Provided in the Appendix is the basic analytical
framework of the SMAQ tool for such matching. One may
refer to [13] and [15] for details. The SMAQ tool allows
users to select a relatively large state space for Markov
chain modeling, e.g., in the range of a few hundred states
if necessary. A large state space is often chosen for the
purpose of matching a long tail portion of CDF or a complex
form of PSD structure. In fact, the Markov chain matching
is one of the three basic components in SMAQ. The other
two components are the statistic collection of any given
traffic/channel trace and the analytical solution of the single
finite-buffer queueing system constructed by the matched
channel/traffic Markov chain models. The integration of the
three components therefore provides us a unique solution
technique for measurement-based queueing analysis [26], [27].

There are three basic guidelines for channel modeling, each
of which applies to a different scenario of channel PSD versus
arrival PSD. First, when arrival PSD is dominant over channel
PSD, one can completely ignore the channel dynamics and
simply use an exponential or constant service rate model for
queueing analysis. Second, when channel PSD is comparable
with arrival PSD and has most energy in LF region, our
modeling only needs to match the channel CDF in LF region.
Third, when channel PSD is comparable with arrival PSD and
has significant energy in MF region. our channel modeling
needs to match both CDF and PSD functions. These guidelines
can be readily extended from [14].

Let us take the same downtown Austin trace with the
directional driving at dB and . Its original

packet-level PSD and CDF statistics are collected in Fig. 17(a)
and (b). One can then use the SMAQ tool to build a 401-
state Markov chain to match the two statistic functions as also
shown in Fig. 17(a) and (b). Compared in Fig. 17(c) and (d)
are one segment of the original PER trace versus a man-made
PER trace generated by the matched Markov chain. As one
can see, the two PER traces are statistically alike. Similar
observations are made in Fig. 18 when the two-level adaptive
coding scheme at is adopted.

We now compare the queueing solutions between using
the original trace and using the Markov generated trace by
computer simulation, under various conditions. In the first
case, the channel is represented by dB with
the adaptive coding. The buffer capacity is fixed at .
There are 500 packets per message on average for the data
arrival statistics. Fig. 19(a) shows the corresponding channel
PSD and arrival PSD, where the channel PSD is found to be
dominant over the arrival PSD and have most energy in the
LF region. According to the above mentioned guidelines, only
the channel CDF in the LF region needs to be matched by the
modeling, which is achieved using a 101-state Markov chain
by the SMAQ tool. Fig. 19(b) shows the excellent agreement
in the steady state queue distribution at % between
using the original trace and using the matched Markov chain
model. In fact, the queue average and standard variation are all
matched very well over a wide range of utilizations as found
in Fig. 19(c) and (d).

The only change in the second case is to increase the buffer
capacity from to , which is equivalent to the
increase of by eight times. In consequence, a significant
amount of energy has been shifted from the LF region into the
MF region. Based on the guidelines, one can no longer neglect
the channel statistics in the MF region. The SMAQ tool is used
to generate a 401-state Markov chain to match both channel
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Fig. 18. Markov chain modeling of channel with adaptive coding atm = 20.

(a) (b)

(c) (d)

Fig. 19. Channel modeling with adaptive coding atm = 20 with K = 2
10:

(a) Arrival PSD versus channel PSD with LF cutoff frequency. (b) Queue
distribution at � = 0:9: (c) Average queue length. (d) Queue standard
deviation.

CDF and PSD functions, at with the adaptive coding.
Again, the queueing solution comparison between the original
trace and the Markov chain modeling in Fig. 20 shows an
excellent agreement over a wide range of utilizations.

In the third case, we increase the signal strength from
dB to 30 dB and reinforce the adaptive coding

at while still fix at . As a consequence, the
channel PSD is much reduced. As shown in Fig. 21(a), the
arrival PSD now becomes dominant over the channel PSD.
From one of the guidelines, one can completely ignore the

(a) (b)

(c) (d)

Fig. 20. Channel modeling with adaptive coding atm = 20 with K = 2
13:

(a) Arrival PSD versus channel PSD with LF cutoff frequency. (b) Queue
distribution at � = 0:9. (c) Average queue length. (d) Queue standard
deviation.

channel dynamics and simply use an exponential server as the
channel model. This is confirmed by the matched queueing
solutions in Fig. 21.

The measurement-based channel modeling technique devel-
oped here provides us a viable approach for high-layer wireless
network analysis.

IV. CONCLUSION

In this paper, we have characterized the packet-level statis-
tics of shadowing and multipath fading channel dynamics and
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(a) (b)

(c) (d)

Fig. 21. Channel modeling with adaptive coding atm = 100 with
K = 2

10: (a) Arrival and channel PSD. (b) Queue distribution at� = 0:9:
(c) Average queue length. (d) Standard deviation of queue length.

examined their impact on queueing performance under various
conditions, such as different ’s, driving patterns, coding
schemes, and buffer capacities. The measurement of channel
statistics are decomposed into three different frequency re-
gions, each of which has a significantly different impact on
the queueing performance. Given the arrival statistics, channel
statistics, and buffer capacity in a system, we developed the
basic guidelines to capture the important channel statistics in
channel modeling. In particular, the multipath fading statistics
are found to be negligible as compared to the shadowing
statistics for network performance study. Further, the adap-
tive error correction coding scheme is found to be highly
effective to cope with the slow time variation of a shadowing
channel for network performance improvement. Our channel
statistics analysis gives a clear picture to the understanding of
queueing performance in wireless network environment. The
measurement-based channel modeling technique introduced in
this paper further provides a new direction toward the integra-
tion of wireless channel modeling and network performance
analysis. Future work include the extension of the present
single channel modeling to the network modeling of multiple
channels which are statistically shared by multiple users at
geographically different locations.

APPENDIX

This appendix provides the background knowledge of
Markov chain construction to match the first and second-
order statistics of a rate process , which in our case is
the packet service rate process of a multipath fading
channel.

Consider an -state MMP defined by its transition rate
matrix and service rate vector ,
where is the service rate when the Markov chain is in state
. The autocorrelation function of the rate process is expressed

by . The Markov chain constructed by

Fig. 22. An example of 8-state circulant with nonzero transition ratesa2,
a4, and a6.

the SMAQ tool must be of circulant type. That is, each row of
is a forward shift permutation of the previous row, denoted

by with circ . Fig. 22 shows
an example of eight-state circulant. One important feature of
such a circulant matrix is that all the eigenvalues of circ
are distinct and expressed in closed form

or (15)

with , where is the th eigenvalue
of . is a Fourier matrix with its th element given
by and , where

is the conjugate transpose of. For a stochastic ma-
trix, we must get . Define a complex vector

, which can be represented by two real
vectors and
with and arg given , .
That is, is the principal value of the argument of. We
then have

or (16)

Its PSD is then expressed by

(17)

with

and

The first component in (17), , representsdc term,
which exists due to the positive average arrival rate. In (17),
each nonzero eigenvalue contributes a bell-shaped component

to PSD. Every such component is represented by a bell-
shaped curve located at the center frequency Im with
half power bandwidth Re and weighted by the average
power . Hence, the PSD of a circulant modulated process
(CMP) is captured by and , where is nonnegative
real. From (15) is uniquely determined by . Also is
uniquely determined by . One can therefore eliminate the
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bell component of simply by setting . When ,
the eigenvalue is called noneffectiveand otherwise
effective. is generally expressed by the superposition of
multiple bell components.

Since the steady-state probability of each state in circulant
is equally likely, i.e., , , the CDF of CMP,
denoted by , only depends on .
is a piecewise multistep function which jumps by at each
individual value of in ascending order, as expressed by

Pr (18)

where represents the number of arrival rates inless than
or equal to . A wide range of CDF functions can be matched
through the design of , after fixing PSD by and . The
variance of CMP is equal to the average arrival power .
Refer to [13] for the detail construction of CMP to match the
PSD and CDF of a given random process.
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