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Capturing Important Statistics of a Fading/Shadowing
Channel for Network Performance Analysis

Young Yong Kim and San-qi LiMember, IEEE

Abstract—In this paper we identify important characteris-
tics of a fading/shadowing channel and present the work of
measurement-based channel modeling for packet-level network
gueueing analysis. Our integration of wireless channel modeling
and data queueing analysis at the packet-level provides a unique
approach to study the effect of various channel dynamics on high-
layer network performance, which otherwise cannot be captured
through the traditional bit-level physical-layer channel modeling.
In our study, the channel statistics are decomposed into three
frequency regions [i.e., low (LF), mid (MF), and high (HF)]; the
statistics in each frequency region is found to have significantly
different impact on the queueing performance. While the HF
statistics can be largely ignored in channel modeling due to their
negligible impact on queueing performance, the LF statistics play
the most important role in channel modeling because of sub-
stantial impact on queueing performance. Since the shadowing
mainly represents the LF behavior of a channel, its dynamics
are found to have a dominant effect on network performance as
compared to the effect of multipath fading dynamics. In wireless
networks, there are many other system factors which may change
the channel dynamics, such as mobile user driving patterns,
and forward-error-correction (FEC) coding (fixed or adaptive)
using automated repeat request (ARQ) scheme. Our study further
examines the individual impact of these factors on the network
performance. In the measurement-based channel modeling, we
use a Markov chain modeling technique to match the important

channel statistics for queueing system analysis. The study shows
an excellent agreement in queueing solutions between using the

packet loss within a message, which can be the basic data unit
at the end-to-endhetwork layer will cause the entire loss of
the message as defined by many network control protocols.
It is therefore imperative to develop sophisticated packet-
level wireless channel models, which can be used by network
engineers to simulate and analyze the high-layer performance
in wireless network protocol development. Limited work is
available on packet-level wireless modeling [7]-[10]. One
commonly adopted method is to use two-state Markov chain
to match the average ON (success) and OFF (loss) periods of
packet transmission measured on a multipath fading channel
[8]. Note that it is unlikely to develop a generic stochastic
model for capturing the great diversity of wireless channel
dynamics, which are time-varying, frequency-selective, and
highly dependent on many other system factors such as noise,
distance, mobile speed, multipath interference, power control,
coding, etc. In other words, a successful modeling technique
must be measurement based to capture real channel statistics
under various conditions. To make this modeling feasible, our
first objective is to identify what are the important statistics
of fading channel to packet-level network performance. In
this paper, shadowing is defined as the signal attenuation
by irregular terrains, which occurs over large area and large

real original channel traces and using the sequences generatedtime scale, and multipath fading is defined as the signal

by the matched Markov chain models.

Index Terms—Channel modeling, multimedia communication,
multipath fading, queueing analysis.

I. INTRODUCTION

attenuation by moving receiver such as Rayleigh and Rician
fading. Our recent study of multipath Rayleigh fading channel
dynamics [11] indicates that the queueing performance can be
strongly affected by the second-order statistics of multipath
fading in low-frequency (LF) region. Further, the queueing
performance is largely dependent on the interaction between

ARLY WORK in wireless channel modeling focused orchannel power spectrum and data arrival power spectrum,
the stochastic modeling of channel dynamics at physioghichever has more LF power will have dominant impact on

layer, measured by received signal strength or bit error ratee queueing performance. Note that the data arrival power
(BER) [1]-[6]. Such physical-layer models cannot be directlgpectrum provides the measure of data arrival correlation
used to evaluate high layer network performance, such t&shavior. In this paper, we investigate the impact of multipath
packet queueing delay and loss. For instance, a few bit errafsd shadowing fading channel dynamics on the packet-level
within a packet, which is the basic data unit at the wirelegs data queueing performance.

layer, will cause the entire loss of the packet. Further, a single The channel dynamics at the packet level is represented by

) ] ] ) a data packet service rate procésgt), which in general can
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q(1) wherey is the maximum ofR.(¢), the queueing process can

be described by
U R —
Rt J @ a(t+ A) = max[0, o(t) + Ra(t) + BL(H) — ). (3)

K It is obvious thatR.(t) plays the same role aB,(t) in the
Fig. 1. Wireless multimedia queueing system. queueing process. The statistics Bf(¢) are just a “shifted”
version of the originalR.(¢) statistics. Therefore, only the

as characterized by bispectrum and trispectrum are méilrét' and second-order statistics of the fgding channel need
difficult to measure. Let us consider a queueing proceg-"sbe measured and captured, especially in the LF band. The

with finite buffer capacity as shown in Fig. 1, whose servicBU€u€ing performance depends on the interplay between chan-
process isk.(¢) and buffer capacitys is measured in packet nel and arrival statistics. If the arrival process contains much
C

units. The data arrival process, (¢) is also a random rate MO'e LF energy than the channel process, one may completely

process, which may represent a multimedia traffic stream Wigpore the channel statistics in modeling because the queueing

its own measured statistical properties. Using the fluid ﬂowarformance IS gor:/ernfed by the akr‘rlval stat|§t|cs, (;mdh V|ce|
assumption, one can describe the queueing process by versa. Our ;tudy t en focuses on the comparison ot channe
PSD and arrival PSD in LF band under various circumstances.

g(t + A) = max[0, g(t) + Ro(t) — Rc(t)] (1) Once the channel is identified to contain significant LF energy
as compared to the arrival process, both first and second-order
statistics in LF are important for the channel modeling in
gueueing analysis.

In [14], the input traffic characteristics is decomposed into
three frequency regions (LF, MF, and HF) and the traffic

R.(t) = [1 - PER®)]p. (2) Statistics in each individual region is found to have signif-

icantly different impact on buffer capacity and transmission
Hence, theR.(t) statistics are simply a shifted, normalizedbandwidth requirement. Based on the same principle, one can
version of the PER statistics. The average channel capacityigide channel dynamics into the three frequency regions and

given by {1 — E[PER®)]}u. Similarly, R,(¢) may represent similarly examine the impact of the shadowing and multipath
the number of packet arrivals at the time interftalt + A).  fading. It is obvious that the queueing performance depends

Most queueing analyses of multimedia traffic so far hawan the combination effect of arrival and channel statistics. Our
focused on wireline networks such as ATM, where the servistudy indicates that the LF and MF arrival/channel statistics are
rate is assumed to be constant. Under the assumption afnast important to capture in modeling due to their substantial
constant service rate, the studies in [13]-[15] indicate that orimpact on the queueing performance. In contrast, the HF
the first- and second-order statistics of the arrival process areival/channel statistics can be largely ignored because of
important to steady-state queue length and loss rate solutiahgir negligible impact on queueing performance. Since the
whereas its higher order statistics can be neglected, giveshadowing mainly represents the low-frequency behavior of a
properly selected frequency range for the measurement. Mokannel, its dynamics are found to have dominant effect on
importantly, the queueing performance is mainly governed Imgtwork performance as compared to the effect of multipath
LF behavior of the arrival process. That is, higher energgding dynamics. Moreover, the shadowing fading dynamics
of the arrival process in LF bands means requirement afe strongly dependent on many other system factors, such
more buffer capacity and/or larger link bandwidth for packets mobile user driving patterns and forward-error-correction
transmission. In real networks, most multimedia traffic streaniBEC) coding (fixed or adaptive) using automated repeat
exhibit high energy located in LF bands, which is equallyequest (ARQ) scheme. Our study further examines the in-
described by large time-varying scale, high correlation, or lordjvidual impact of these factors on the network performance.
range dependence. The fading channel statistics in the downtown Austin area is

Intuitively, one may characterize a queueing system hysed as an example of a typical large scale fading scenario
a nonlinear low pass filter, where the HF variation of thim this paper.
input traffic can be well absorbed into the buffering but Similar to the modeling of the arrival process, one can use
its LF variation remains largely unchanged [16], [17]. Foa measurement-based modeling technique [13], called SMAQ,
instance, the lowest frequency component of the traffic, i.¢o, build a Markov modulated process (MMP) to match the
the DC term, is its average arrival rate, which always stayseasured first- and second-order channel statistics. An MMP
intact through a queueing system unless with traffic loss Ipyocess is defined by both rate vectdrand Markov chain
buffer blocking. Moreover, such low-frequency behavior dfansition rate matrixQ. While ¥ defines the service rate [or,
the traffic will remain largely unchanged through a networarrival rate in case oR,(¢)] in each stateQ characterizes
of interconnected queues [18]. the time dynamics of the rate process. H(¢) modeling,

The queueing analysis in wireline networks can be extenddéte service rate is assumed to be exponential in each state.
to wireless. Essentially, the effect of the service rate statistiEsr R,(t) modeling, the arrival rate is assumed to be Poisson
is the same as the effect of the arrival rate statistics on timeeach state. Since botR.(¢) and R,(¢) are independently
queueing process. For instance, if we defitj¢t) = .—R.(t) modeled by MMP, the queueing system is formulated as a

wheregq(t) is the queue length at timesubject tog(t + A) <
K. Given the channel transmission capagitynmeasured in
packet units atA time interval and the error probability per
packet at timet denoted by PER), we define
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finite quasi-birth—death process, which can be numerically S
analyzed by the Folding algorithm [19]. Note that MMP  Xionio
has been commonly adopted for service and arrival process -
. . . . Guadalupe

modeling in queueing fields.

One may further decompose the arrival process into a  [Lavaca
number of independent data sources. Since the emphasis of thisColorado —
paper is placed on the channel modeling, we simply assume

i I Congress - A
that each data source is modeled by an i.i.d. two-state MMP, |
alternating between ON and OFF periods. Each exponential %‘;}ZOS il
ON period represents the generation of a single message Jacinto g

consisting of multiple packets. While in ON period, packets

Trinity
are generated at a Poisson rate. Each OFF period represents Nueces
the inactive time interval between two adjacent message gen-
erations. Note that the superposition of independent MMP'’s is Eie\(fier

still an MMP. As one will see, our queueing solutions based

on the modeling match well with the simulation results using 2 gEgg2g 88 é g
the original wireless channel trace.
The remainder of the paper is organized as follow§'d-2- A simplified map of downtown Austin area.
Section Il explains our measurement-based channel modeling
framework. Section Ill investigates the queue response to o 90
various fading channel dynamics, using both computer h
simulation and analytical modeling techniques. Section IV g
is the conclusion. El
2
[I. CHANNEL AND ARRIVAL STATISTICS ;
o
A. Channel Statistics at Signal-Strength Level “ 100 o 100 150
Channel fading behavior can be classified into shadowing 0 sTime in sec

dynamics and multipath fading dynamics [20]. The shadowi
dynamics describes the signal attenuation due to the motion of
a mobile station over a large irregular terrain. The multipath

fading dynamics captures the signal attenuation by multipl? attenuation in the downtown Austin area. This segment

versions of transmitted signals arrived at a receiver wiff ¢ dri I treet (Trinit). The att i
small changes in position. In general wireless communicatifpPreSeNts a drive along one stree (Trinity). The attenuation
Fig. 3 are relative values and do not represent the actual

environments, both shadowing and multipath fading, manifeSt " d sianal st th. Both shadowi d multioath fadi
themselves simultaneously where shadowing defines averﬁif;%e've signal strength. Both shadowing and muftipath fading

path loss at a certain position with log-normal deviation froft © included in the measurement.
the mean, and multipath fading introduces further fast variati -

of received signal strength [20]. Lét(¢) be the impulse %n Channel Statistics at Packet Level

response of a fading channel. One can then decompose th@ne can use the collective fading profile at signal-strength

3. Measured signal attenuation in downtown Austin area.

Fig. 3 shows an example of short segment of time series

magnitude of(t) into two parts level to generate various kinds of time series of packet error
rate, PERt), given the system conditions such as modulation
[A(t)] = as(t) X ay(t) (4) method, packet size, and error correction coding schemes. The

statistics of PER) provides the probabilistic description of

where «;(t) and af(t) are the attenuation of shadowing andhe packet loss process.
multipath fading, respectively. Denote the average bit energy of the received signab’py

Because of the highly variable wireless fading environmeritnd the noise power density byy, within a cell. Assuming
any realistic channel modeling must be measurement-basiq{t)| is normalized, the received bit-energy-to-noise-ratio
As an illustrative example, our study is based on the retine series is then represented by
fading statistics coIIec_:ted in the downtown area_of Austin City SNR(#) = [h(£)]|2E3/No. )
at 1.9 GHz with continuous wave (CW) [21]. Fig. 2 shows a
simplified map of the measurement coverage in the downtowased on a given channel modulation scheme, one can convert
Austin area. The base station is located at Congress and thé signal-to-noise ratio (SNR) time series to bit error rate time
Street. The car was driven at normal speed on every strees@fies (BER). In our study, we assume to use the id¢4dl
the map to collect the CW attenuation at 1 ms interval. The si@&PSK modulation scheme, such that one can write [22]

icr>1f zzggtoe\fred by the measurement is approximately 400 m BER(f) — Q(JW) ©6)
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time

transmitter

packet 1 packet3

receiver

Fig. 4. Frame structure.

where @) is defined as

Q(») = % / e 2 g, (7) NV

-t

. . . 4
The conversion from the BER time series to packet error rate |
time series (PER) is further dependent on its selected channel Mirtored
coding scheme. Without error correction coding C .
Characterestics

PER{#) = 1 — [1 — BER()]" 8)

where n is the number of bits in a packet, including error
detection coding bits if any. If an error correction code is
employed with capability of correcting up ta bit errors

Infinite Plane

PER?) = Z <?)BER(t)i(1 —BER(#))"%.  (9) Fig.5. Infinite mirrored cell model.
1=m-+1

One assumption made in (8) and (9) is that the fading tinii@the current slot is successful, as described in Fig. 4. In other
variation is slow as compared to the packet transmission tinveQrds, the same packet will be retransmitted in the next time
such that BER¢) remains virtually unchanged during a packeslot if it fails in the current slot with the probability PER.
transmission time. In other words, we take the average of theour study, we assume four time slots per frame as in Fig. 4.
original SNRt) in each adjacent packet transmission interviVe further adopt théype IARQ scheme [23] where both FEC
to generate the packet-level BERtrace. This assumption hascoding and ARQ control scheme are used to achieve better
been verified by comparison of the queueing solutions betwei@roughput and more reliable communication.
the original bit-level BER trace and the averaged packet-levelThe data packet service rate process is therefore defined by
BER trace in [11]. It is also intuitively clear since the bit-level o
BER variation only contributes to the high frequency behavior Re(t) = [1 - PER®)]n (10)
of the channel statistics, which has negligible impact on thehere ,~! is the frame interval, since there is one packet
gueueing solutions as one will see in Section IlI-B. transmission on each channel per frame. Thét) statistics
PER(t) gives the probability of packet loss at timen the is just a shifted, normalized version of the PER statistics. The
channel. Assume to use a time division multiplexing acceaserage channel capacity is given by
scheme on the wireless network, where each time frame is
divided into a fixed number of slots and each slot represents a B[R:(t)] = {1 — E[PER®)] }u. (11)
channel to transmit one packet per frame. Using the frequency o
division duplex (FDD) scheme, both upstream and downstredm Channel Statistic Measurement
links will have a different frequency bandwidth. Here we only To use the fading sequence collected over a single cell
consider the data queueing process associated with a sirfglegeneric network analysis, we further assume an imaginary
channel. A packet will stay in the queue at the transmitter untilfinite size cellular system where all cells have same dimen-
it is successfully received and acknowledged by the receivaion, size, and attenuation characteristics as our measurement
According to the standard stop-and-wait ARQ flow contr@rea in downtown Austin. Fig. 5 depicts the concept of our
scheme, a new packet will not be sent out until the previoireaginary cellular system. Note that adjacent cells have the
packet has been successfully acknowledged by the receisame attenuation characteristics which are mirrored images
Since the packet propagation time in a typical wireless eaf each other with respect to the cell boundaries. On this
vironment is substantially shorter than the frame size, it imaginary cellular system, we consider two driving patterns:
reasonable to assume that, before the next time slot becomiesctional versus random. Each time when a mobile user is at
available, the transmitter will know if the packet transmissioa cross section of the street, it turns left with probability
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104 Similar performance is observed in Fig. 6(c) and (d) in the
3 3102\41 random driving. As compared to the directional driving in
5 10° e m=20 Fig. 6(a) and (b) the random driving reveals much increased
8 ] g 1 \4\ LF energy at each givem and £, /Ny. This is because in our
g 10 £ m<50 particular example the random driving tends to stay longer
2 101 810_2 m=100 in the vicinity of a certain area as compared the directional
0 1 2 3 0 1 2 3 driving, thus increasing the autocorrelation of the signal at-
normalized frequency x 104 normalized frequency x 10 4 tenuation over time. Note that such a power comparison can
@) (b) be changed with different driving patterns. For example, if we
haveP, = 0.1, P, = 0.8, and P, = 0.1 for directional driving,
A 104 o 103 which represent mostly turning right at each cross section, we
2 103 m=0 D 4R m=0 will stay longer _in the vicinity of _a_certain area compgred tp
§ 5 E — the apove meqt!oned random driving pattern. Our main p0|_nt
=10 = 10 here is that driving pattern can change the channel dynamics
g 10" m50 E 1 =50 iz as well as queueing performance as we will soon observe.
< 100 m=100 e 1o One may find that the channel PSD has a significant amount
o 1 2 3 o 1 2 8, of energy in its LF region, which is mainly contributed by
normalized frequency x 10 normalized frequencyx 10 the shadowing dynamics. The energy of multipath fading
(©) (d) dynamics spreads out over a much larger frequency region.
Fig. 6. Channel PSD with directional driving pattern. &)/No = 20 dB.
%32/%0/‘,\:0 3_03([1)Bc.iB, with random driving patten. (ck,/No = 20 dB. (d) D. Decomposed Channel Statistics

According to the work in [14], one can decompose the
traffic dynamics into three frequency regions: LF region in
0 < |w| £ wr, HF region in|w| > wpy, and MF region
iNn w, < |w| < wyg. The study in [14] further gives the
In the power distribution, we consider two average SNR 2 cc'nd guidelin€wr, wy) = (0.017 /s, 27/ dinas)

or the frequency division in measuremedy,.. is the maxi-

levels in each cell, defined b¥,/No = 20 dB and 30 dB. . . ) : .
. : mum queueing delay in the fluid-flow queueing model, given
In the selection of channel coding schemes, we assume to yse

the Reed—Solomon code where the number of correctable etr\fﬁ:/ e“ r;l\tlge‘:%é(rr:;inb?eﬁsijrlt(i:ﬁp[)fgt%azqgé ;(Snllt:vsinave:ggt(iecal
errors in each packet. can be set at 0, 20, 50, or 100. of ' gp

course, the coding overhead increases witf23]. We further implications. For the LF traffic, one only needs to measure

. . . he first-order statistics (CDF), especially the tail portion of
fix the channel speed at 1.92 Mbit/s and the size of each packeef o i )
atn = 480 bits, which includes thém + 1 coding bits for its “distribution. For the MF traffic, both first- and second-

: . %der statistics (CDF and PSD) are important to measure for
error correction. Based on these conditions, one can use the

original SNR%) trace, collected in the downtown Austin are queueing analysis. For the HF traffic, no statistics need to

to generate variou®,(t) traces and so to collect the statisti(?b e measured since the buffer perfectly absorbs its dynamics.

of R.(t). We use 14 h of.(f) sequence for simulation andsrhe extension from traffic dynamics to channel dynamics is

analysis throughout the paper. straightforward,

Fig 60 a0 shows he PSD (1) i the et 2% SBUING e nly oot hanne) stttcs e can
driving atm = 0, 20, 50, and 100, with respect tb), /Ng = 20 b q 9

dB in Fig. 6(a) and 30 dB in Fig. 6(8)Clearly, increasing ysis of wireless multimedia transmission over fading channel.

m has the effect of reducing channel PSD because of tE"or instance, if the channel PSD contains most energy in the

. o . region, we only need to build a channel model to match
improved packet success rate, but this is achieved at tt e . . .
€ CDF without loss of queueing solution accuracy. On the

expense of its much reduced number of user information bits | . : .
S . . ~aother hand, if the channel PSD contains most energy in the
each packet, which is equivalent to the reduction of effecti . . L
F region, one can neglect the entire channel dynamics in

channel capacity. The inspection of Fig. 6(a) and (b) shows | . S
that increasing?, /N, also has the effect of reducing Channerlnodellng. Only when the channel contains significant amount

PSD at each givem:, which is obvious due to the improved?(;c i:‘;rcghy t')r(])ttr?ecl\élg ;en%'og'sgm channel model must be built
bit error rate performance within the cell. Note that while the '
average ofR.(¢) increases with the increase &,/Ny or

m, the variance and total power d.(¢) decreases with the E. Packet Arrival Statistics

turns right with P,. or goes straight on the same street with
For the directional driving, we assuni¢, = 0.6, P, = 0.2,
and P, = 0.2. For the random drivingP; = P. = P, = 1/3.

increase of, /N, or m. Yet, increasing®; /Ny in this cell will As commonly observed in traffic measurement, most mul-
also cause the increase of its noise level in the neighborhafidedia traffic streams have their energy highly concentrate
cells, which is not considered in our study. on LF band, which is attributed to the long range dependence

1 . . or large time-varying scale of packet arrivals. Fig. 7 shows
For the purpose of comparison between the service PSD and the arrival h | I df ical Eth d
PSD in queueing analysis, both power spectra and their frequency need toHen examples as co ected from typical Ethernet data trace

normalized by the average channel capacity. See [24] for details. and JPEG video trace. One can use the techniques developed
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"g‘ 'F.? 20 I1l. QUEUENIG RESPONSE
36 N 15 Here we investigate the queueing response to channel dy-
<3 ?,’L namics under various conditions, especially with respect to
< 4 2 10 different driving patterns and fixed/adaptive channel coding
EQL\/\V\ E 5L schemes. To help us understand the role of channel PSD
% 0 played in queueing performance, we first review the effect
a0 o O . . . .
0 5 10 0 5 10 of multipath fading dynamics analyzed in [11]. In the study
radian frequency radian frequency of queue response to shadowing and multipath fading dy-
(@) (b) namics, our focus will be on the identification of important
Fig. 7. Power spectrum of (a) Ethernet and (b) JPEG traces. channel statistics. A Markov chain modeling technique will

then be presented to match such important channel statistics

. . . f k lysis.
in [13] and [15] to build a Markov chain modulated processOr network analysis

to match such statistics.
For simplicity, here we assume that the data arrival proce&s Queueing Response to Multipath Fading

consists of M independently, identically, distributed (i.i.d.) The study of the queueing response to multipath Rayleigh
sources, each of v_vhich may represent a virtual connection fRling channel statistics in [11] reached two major con-
the channel. In this study we take = 5. Each data source ¢|ysions. First, the channel PSD plays an important role
is modeled by a two-state Markov chain, defined by in queueing analysis. Second, the queueing performance is
-3 B . strongly dependent on the interplay between arrival PSD
Q= [ a —a}’ 7=[07n], m=[—c ¢ (2) and channel PSD, whichever has more LF energy will have
stronger impact on the queueing solutions.
p~* and o' are the average of the exponential ON- and One of the most frequently used packet-level wireless
OFF-periodsy.y is the Poisson packet generation rate Whilghannel model is a two-state Markov chain alternating be-
in ON-period, ande = /(o + f) is the probability in tween ON- and OFF-periods [8]. The average ON-period
ON-period. While 7 defines arrival rate in each stat@® (OFF-period) is designed to match the average run length of
characterizes the time dynamics of the rate procgss.the consecutive packets which are successfully (unsuccessfully)
steady state probability distribution of the chain. One mayansmitted. The statistical functions matchable by two-state
associate each ON-period with a message generation tiffrkov chains are rather limited. Its PSD function consists
The power spectrum of the aggregate sources can thendpey single bell component centered at the zero frequency;

expressed by its CDF function only allows a single nonzero service rate in
Bio? each ON-period. In contrast, one can use the SMAQ technique

P(w) = 277°6(w) +7 + m (13)  developed in [13] to built a multistate Markov chain to match

! both PSD and CDF functions in rather complicated forms,

with as done in [11]. Let us compare these two different channel

7= Mevon, Bi=2(a+ ), 0,3 = Me(1— 2. (14) modeling technique_s in study_ of mul_tipath fading chann_el
dynamics for queueing analysis. Consider a multipath fading
The impulse term in (1327726(w), represents the DC which channel system, running at 2 Mbit/s rate with/N, = 10 dB
is contributed by the nonzero average arrival rateThe and taking no error correction coding (i.es, = 0).
constant termz, corresponds to the white noise effect of The thick solid line in Fig. 8(a) shows the original channel
Poisson local dynamics in packet generation [12]. The [aBSD collected from ai.(¢) trace which is converted from the
term in (13), which is our major interest, has the bell shapdannel fading trace generated by the Jakes’ method [25]. The
centered at zero frequency with its half power bandwidth givesame trace is used in computer simulation to obtain the original
by B; and the average power equal to the arrival rate varianaeerage queueing performance as a functiop, afisplayed in
03. Fig. 8(b). The queue performance is measured in packet units.
Three conditions are required for the two-state Markov The same channel fading trace is used to collect the average
chain design and to fix the arrival PSD. They can be takean lengths which are then applied to the construction of a
from the source peak rate,,, source average ratg, and two-state Markov chain model. The thin solid line in Fig. 8
average message size!v,,. Here we fixy,, at  and¥ at shows the corresponding channel PSD and queueing solutions
p{l — E[PER)]}1 for each giverp. In reality, the message using the two-state Markov chain model. As compared to the
size varies largely depending on applications. Increasing mesiginal results, such a modeling can severely underestimate
sage size expands the correlation of packet arrivals, whitte LF energy of the channel, which is why the average queue
is equivalent to increasing the LF power. Mathematicallyength becomes significantly underestimated. For comparison
increasing message size has the effect of reducing the lpltposes, we use the SMAQ tool to generate various Markov
bandwidth while keeping the average power unchanged. Agl@ain models to match the channel PSD in different degrees.
consequence, the arrival energy will concentrate more on tRefer to the Appendix or [13] for the detail. For instance,
LF. We assume 500 packets per message on average in ¢ime such Markov chain model has been designed to well
paper. match the LF channel PSD as shown in Fig. 8. Since the
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60 ® 350
50 .g ggg — original
0407 8 200 - - - PSD matched
230 : &150 , - PSD overmatched
201\ 2100 Y/ -~ -PSD undematched
1017% S 50 . ——runlength matched
A 2 ?
001 02 03 04 0 0.2 04 06 08 1
normalized frequency normalized loa
Fig. 8. Effect of PSD mismatching.
12 10 speed channel contains much more LF energy than a low-speed
10 80 channel. The arrival PSD remains unchanged by the channel
a8 — arrival d go! __ arival speed. . -
Q6 ___ channel o 49| ___ channel In the low-speed channel case, since the arrival PSD has
4 ‘ much more LF energy than the channel PSD, the queueing
2 204, . .
ok- Y performance should be mainly governed by the arrival PSD.
0 02 Io 4d? 6 0. 8 R 0 02 '0'4d f0.6 08 1 In other words, one can completely ignore the channel spectral
normatzed frequency normalized frequency statistics in channel modeling and use a simple stochastic
@) (b) model like exponential server in queueing analysis. This is
@ 70 © 600 verified by the comparison of the queueing performance in
> 60 j & 500 Fig. 9(c) between the original channel trace and the expo-
% 50/ —— simulation | % 400, —— simulation nential server model. In the high-speed channel case, the LF
2 gg - -~ exponential/ 2300, ~~~ exponential channel PSD can no longer be neglected by channel modeling.
%20 %200 Otherwise, the queueing performance will be significantly
g 10 g 100 ) underestimated as described in Fig. 9(d).
© . © 0 o = . . .
00 02 04 06 08 1 0 02 04 06 08 1 _The study reveal_s the importance of comparing _arr!val PSD
normalized load normalized load with channel PSD in the channel modeling. In principle, the
(©) (d) channel dynamics need to be considered by channel modeling

Fig. 9. Combination effect of channel PSD and arrival PSD. (a) 48 Kblt/éf and only if the LF channel PSD is comparable to the arrival
(b) 8 Mbit/s. (c) 48 Kbit/s. (d) 8 Mbit/s. PSD.

queueing performance is mainly governed by the LF behaviBr Queueing Response to Shadowing and Multipath Fading

of the channel, its average queue length is found in excellentrhe shadowing and multipath fading dynamics contribute to
agreement with the original one. For comparison purposgge channel statistics in greatly different ways. The multipath
we have constructed two additional Markov chain modelgading is mainly caused by the motion of receiver and its
One of them undermatches the LF channel PSD while thgriation is governed by the maximum Doppler frequency shift
other overmatches the LF channel PSD. As one can seegien by fp = v/\ wherewv is mobile speed and is the
Fig. 8, the undermatched model leads to the queue lengihvelength [2]. In the scenario considered in the downtown
underestimation while the overmatched one leads to the quenigstin area, where mobile speed is less than 30 Kmph and
length overestimation. Notice that all three Markov chaigarrier frequency is 1.9 GHz, the maximum Doppler frequency
models, generated by the SMAQ tool, share the same averagg is in the range of around 50 Hz. In contrast, the shadowing
power and CDF. In other words, the first-order statistics @ccurs due to the irregular terrain and path loss. In a downtown
these three Markov models are identical. This example cleagyea, the shadowing is mainly contributed by the buildings.
indicates the importance of matching LF channel PSD imhe time scale of variation of shadowing is typically in the
channel modeling to queueing performance analysis. range of a few tens of second to a couple of minutes. In other
In the above example, we purposely designed the arriwgbrds, much of the shadowing energy concentrate on a very
PSD significantly less than the channel PSD, especially lif band, typically less than 0.2 Hz.
the LF band. Hence, the queueing performance is mainlyBased on this inherent energy separation between the shad-
determined by the channel PSD. In general, the queueinging and multipath fading in the frequency domain, one can
performance should depend on the combination effect of the@ther compute the average multipath fading energy versus
channel PSD and the arrival PSD in the low frequency bantle average shadowing fading energy from the collected down-
To explore this idea, we consider two extreme cases. Owgvn Austin trace. For instance, the average multipath fading
case has a low-speed channel running at 48 Kbit/s; the otleeergy is found 1.3 times greater than the average shadowing
has a high-speed channel running at 8 Mbit/s. The rest of theergy under the conditiofZ, /Ny, m) = (20 dB,0), or 28
channel conditions and the arrival statistics remain unchang@des greater under the conditio®;, /N,,, m) = (30 dB, 100).
as in the above. The corresponding channel and arrival spedfinough the multipath fading has much more energy than
of the two channels are plotted in Fig. 9(a) and (b). A higlthe shadowing, it is relatively evenly distributed over a much
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Fig. 10. Effect of multipath fading in the presence of shadowing givehig. 11. Channel PSD with LF cutoff frequency. (a) Directional. (b) Random
(Ey/No,m) equal to (a) (20 dB, 0), (b) (30 dB, 0), (c) (20 dB, 50), anddriving patterns and channel CDF wifh, /No = 20 dB. (c) m = 20. (d)

(d) (30 dB, 50). m = 100.

wider frequency range. In contrast, the highly concentrated 4 04 0103

energy distribution appeared in the LF band, as observed |ré’£ 3%\ directional | € I\

Fig. 6, is solely attributed to the shadowing. 10 7\&A i B directional
Similar to the effect of arrival PSD studied in [14], the ﬁ1 ol random 2107

gueueing performance is expected to be much more affected b arrival g random ar;i\;af -

the LF channel dynamics (shadowing) as compared to the HFC101 ,,,,,,,,,,, _4‘ 10! 4

channel dynamics (multipath fading). This is because the HF Ono,n?é?ized1freql]é‘:’,é‘y1o ® nonalized freque)r(1c139

variation of the channel service rate can be largely absorbed
through the buffering system. To verify the dominance of
shadowing dynamics in channel statistics, one can take the ;54

@ (b)

moving average operation to the original downtown Austin 3 53 _random  apyivg

trace at every one second interval, such that the new fllterecfg . directional N/

trace contains no multipath fading dynamics. Fig. 10 comparesy 8102 7 e T .

the simulation results of the queue distribution using both the € , 1 1| random -

original trace and the filtered trace given the buffer capacity 2 arrival directional

K =210 and the system loading factpr= 0.9, over a wide o 05 1 15xi04 ° 05 1 15x10%
range of selection of, /N, andm. One can hardly observe normalized frequency normalized frequency
gueueing difference between the two traces. In other words, (©) (d)

one can completely ignore the multipath fading dynamics ig. 12. Channel PSD versus Arrival PSD {dEy, / No, m) equal to (a) (20
the presence of shadowing for queueing analysis. dB, 0), (b) (30 dB, 0), (c) (20 dB, 50), and (d) (30 dB, 50).

C. Queueing Performance to Various Factors dmax = K/p, we first takeK = 2!° and = = 1 ms, such

Given the assumption of the cell size of downtown Austiff1al dmax = 1 s as shown by the vertical line in Fig. 11(a)
as in Fig. 2, here we examine the effect of driving patterr®!d (D) for the frequency division. One can find a significant
and buffer capacity on the queueing performance. amount of channel energy located in the LF region. Note that

Let us replot Fig. 6(a) and (c) for the channel PSD dhe channel CDF is independent of the driving patterns, which
the directional and random drivings in Fig. 11(a) and (0% further verified through the measurement of the real traces
using the radian frequency unit. According the frequendys compared in Fig. 11(c) and (d) & /No = 20 dB for
decomposition concept in Section 1I-C, the channel PSD can = 20 and 100.
be further divided in LF, MF, and HF regions. The HF channel In the queueing performance study, we consider four
PSD has been largely ignored in Fig. 11(a) and (b) due to ftbannel scenarios, represented by the pair of parameters
negligible impact on the queue. The bound between the LE;/No, m) equal to (20 dB, 0), (30 dB, 0), (20 dB, 50)
and MF regions is defined by, = 0.017/dpax. dmax IS the and (30 dB, 50), respectively. The channel PSD of the two
maximum allowable queueing delay which is dependent ahiving patterns is further compared in Fig. 12 at each given
the buffer capacity{ and average channel service rate=or scenario. Also plotted in Fig. 12 is the arrival PSD given the
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Fig. 14. Effect of drivi tt it = 215 f Fy/No, | t
(a) (20 dB, 0), (b) (30 dB, 0), (c) (20 dB, 50), and (d) (30 dB, 50). '9 oct O Cring patierns or (Ey/No, m) equal to

(a) (20 dB, 0), (b) (30 dB, 0), (c) (20 dB, 50), and (d) (30 dB, 50).

assumption of average 500 packets per message, whichygnge the effect of channel statistics in each frequency region
negligible as compared to the channel PSD except in the Iggf the queueing performance.

scenario. In Fig. 13, the queue distribution of the two driving
patterns atp = 0.9 are found in excellent agreement for all '
the scenarios. One may question why the queueing solutidhs Effect of Channel Coding

are virtually identical given the significant difference in the The LF channel dynamics (i.e., shadowing) are equivalently
channel PSD of the two driving patterns. This is becausedascribed by the large time scale variation behavior of the ser-
large amount of channel energy is located in the LF regiogice rate. In other words, the more LF energy means the longer
Recall in Section II-C, the important channel statistics iperiod of channel congestion once it occurs. One may adopt a
the LF region are its CDF behavior, rather than the PSBroper error correction coding scheme to increase the success
behavior. Since the CDF behavior of the two driving patterrsiobability of each packet transmission, but this is achieved at
are basically identical, their queueing performance shouw@rtain expense of increased bandwidth overhead for coding.
not be significantly different. In other words, the channeh fact, the bandwidth overhead for coding may even offset
modeling is sufficient to capture the CDF behavior in the Lthe bandwidth saving achieved by its increased packet success
region when the energy in the MF region is insignificant. probability. In other words, the effective channel bandwidth
Such a modeling situation may change as the buffer capacifyd its associated queueing performance may even deteriorate
increases. For instance, let us increase the buffer capagiyen an excessive error correction coding scheme is adopted.
from K = 2'° to K = 2!, which leads to the 32 times Further, the coding theory is mainly developed using the
reduction of the boundary frequeney;, in Fig. 11(a) and traditional independent assumption of error occurrences in
(b). In consequence, much of the channel energy is nawljacent bits, whereas in reality they are highly correlated
shifted from the LF region into the MF region, such thaas described by the strong LF channel dynamics. Hence,
the MF energy becomes no longer negligible. This is whie effectiveness of error correction coding in the shadowing
the difference in the queueing solutions of the two drivingiireless environment needs to be carefully examined.
patterns now becomes significant as shown in Fig. 14, whichThe implementation of error correction coding can be either
is mainly caused by the difference of the two channel PSD’sfixed or adaptive. While a fixed coding scheme is statically
the MF region. Especially since the directional driving alwayassigned and independent of the present channel condition,
contributes less energy to the LF and MF regions as compaeed adaptive coding scheme may dynamically select different
to the random driving, its queueing solutions also tend to leeding schemes based on the observation of the present
better than that of the random driving. For the last scenambannel condition. The adaptive approach is expected to be
in Fig. 14, the queueing difference between the two drivingarticularly effective and practically feasible to cope with the
patterns is insignificant. This is because the arrival PSD, whislow time variation of the channel.
is independent of the driving patterns, is no longer negligible Consider the directional driving in a cell as in the previous
as compared to the channel PSD. study. Fix K = 2'° and ' = 1 ms such thatl,.. = 1
Clearly, there are many system factors, such as the arrigal Adopt the Reed-Solomon coding scheme at each given
PSD, buffer capacity, and driving pattern, which can greatly except atm = 0. Fig. 15 shows the average queue



KIM AND LI: STATISTICS OF FADING/SHADOWING CHANNEL 897

%, 250 o 10‘1 S

5200 10 "3‘/;”/"':

%150 é’ 16

3100 T 10 m=100

o) S

g %0 g m=50

) =

P 0O 02 04 06 08 Y 0 02 04 06 08 0 500 1000
offered load offered load service rate

(@ (b) (©
Fig. 15. Effect of fixed channel coding. (a) Queue length. (b) Packet loss rate. (c) CDF.

-1

10 £ 250
2 m=0 e
= 10" o 200
2 / g
8 .,d " m=50 3 190
=10 2
;6 o 100
0 10” m=100 8
a m=20 [ € 50 :

107 > 0 0

0 0.5 1 ® 0 0. 0 500
offered load offereg load service rate 1000

@ (b) ©

Fig. 16. Effect of adaptive channel coding. (a) Queue length. (b) Packet loss rate. (c) CDF improvement.

length and packet loss rate based on the downtown Austite honcongestion period, no error correction coding will be
trace for differentm at E,/Ny = 20 dB, using the fixed implemented (i.e.;n = 0). Otherwise, the Reed—Solomon
coding scheme. The offered load in Fig. 15, denotedpby coding scheme will be invoked with a preassigned The
is defined by the ratio of the effective data arrival rate (i.eselection of SNR, and m is dependent on the combination
excluding the channel coding overhead within each packet)&fect of the involved coding overhead versus the lost channel
the total average channel capacity. Also plotted in Fig. 15(Bpndwidth without coding. That is, the coding will be invoked
is the channel CDF performance. One can only achieve t&& soon as the lost channel bandwidth without coding exceeds
maximump < 50% atm = 100 subject to the average queudhe coding overhead. We assume an ideal situation where the
length of no more than 100 packets, versus 70%at 50 Presentt, /Ny value is made available to the mobile user and
under the same queue length constraint. The selection isf SO the lost channel bandwidth without coding can be obtained
dependent on the required packet queueing delay and loss f@& the corresponding packet loss rate. The coding overhead
performance for quality of services. For instance, if the servié@ also directly computable at each givem. The optimal
quality is mainly measured by the average queue length, oalRn can then be identified.
should choosen = 20 to achieve the minimum queue length N our case, we taken = 20, 50, and 100 for the
under the heavy load condition. On the other hand, if tfflaptive coding. Fig. 16 provides the corresponding queue
service quality is mainly measured by the average loss rd89th and packet loss rate performance. For comparison
subject to the loading condition < 50%, one may choose PUrPOses, the results without coding at = 0 is also
m = 100 for the best loss performance. Note that the avera@iSPlayed in Fig. 16. It is obvious that the adaptive cod-
loss rate can never be less tharrd®or p > 50% by the fixed M9 achieves much better queueing/loss performance than
coding scheme, no matter whieh is selected. In other words, "° coding. Also p_Iotted n Fig. 1_6(C) is the channel CDF
while a fixed coding scheme can significantly improve th erformance. The inspection of Figs. 15 and 16 further show
success probability of each packet in the channel congest gﬁnarkable t_hrough'put/delgy(loss .perform.ance |mprovement
period, its overhead also reduces the effective transmiss the adaptive COd".]g' This is mamly achieved b y removing
bandwidth in the channel noncongestion period. the unnecessary coding ove_rhead in noncongestion periods. In
I%erneral, the design of adaptive coding scheme is dependent on

This unbalanced issue can be overcome through either. . . . o .
. . . various system conditions, including channel statistics, arrival
adaptive power control or adaptive channel coding. In ou

situation where the most deep fading occurs at the cell bou s(gatistics, buffer capacity, and service quality requirement.
ary, the adaptive channel coding is certainly more effective

since the power increase at the cell boundary will increafe Measurement-Based Channel Modeling

the interference to other cells. Hence, we only consider theSo far our main focus has been on the identification of
adaptive channel coding approach. For simplicity, we useiraportant channel statistics for queueing analysis, which is
two-level adaptive coding scheme based on the detectiondifectly related to the interplay between channel PSD and
the presentE, /Ny level as compared to a given thresholdrrival PSD in the LF region. Let us now concentrate on
SNRy,. If the presentE, /N, is greater than SNR, i.e., in the Markov chain modeling of such channel statistics. It is
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Fig. 17. Markov chain modeling of channel with fixed codingrat = 20.

obvious that the Markov chain channel modeling is necessgrgcket-level PSD and CDF statistics are collected in Fig. 17(a)
for queueing analysis if and only if the channel containsnd (b). One can then use the SMAQ tool to build a 401-
comparable LF energy to that of the arrival process. Thsate Markov chain to match the two statistic functions as also
SMAQ tool is used to build an MMP process, which cashown in Fig. 17(a) and (b). Compared in Fig. 17(c) and (d)
simultaneously match both CDF and PSD of the fadingre one segment of the original PER trace versus a man-made
channel. Provided in the Appendix is the basic analyticRIER trace generated by the matched Markov chain. As one
framework of the SMAQ tool for such matching. One magan see, the two PER traces are statistically alike. Similar
refer to [13] and [15] for details. The SMAQ tool allowsobservations are made in Fig. 18 when the two-level adaptive
users to select a relatively large state space for Markoweding scheme at, = 20 is adopted.
chain modeling, e.g., in the range of a few hundred statesWe now compare the queueing solutions between using
if necessary. A large state space is often chosen for ttee original trace and using the Markov generated trace by
purpose of matching a long tail portion of CDF or a complegomputer simulation, under various conditions. In the first
form of PSD structure. In fact, the Markov chain matchingase, the channel is represented By/N, = 20 dB with
is one of the three basic components in SMAQ. The othtite adaptive coding. The buffer capacity is fixedfat= 21°.
two components are the statistic collection of any givefhere are 500 packets per message on average for the data
traffic/channel trace and the analytical solution of the singarival statistics. Fig. 19(a) shows the corresponding channel
finite-buffer queueing system constructed by the match&$D and arrival PSD, where the channel PSD is found to be
channel/traffic Markov chain models. The integration of thdominant over the arrival PSD and have most energy in the
three components therefore provides us a unique solutioR region. According to the above mentioned guidelines, only
technique for measurement-based queueing analysis [26], [2Af channel CDF in the LF region needs to be matched by the
There are three basic guidelines for channel modeling, eanledeling, which is achieved using a 101-state Markov chain
of which applies to a different scenario of channel PSD vershg the SMAQ tool. Fig. 19(b) shows the excellent agreement
arrival PSD. First, when arrival PSD is dominant over channil the steady state queue distribution at= 90% between
PSD, one can completely ignore the channel dynamics amsing the original trace and using the matched Markov chain
simply use an exponential or constant service rate model foodel. In fact, the queue average and standard variation are all
gueueing analysis. Second, when channel PSD is comparahkgched very well over a wide range of utilizations as found
with arrival PSD and has most energy in LF region, oun Fig. 19(c) and (d).
modeling only needs to match the channel CDF in LF region. The only change in the second case is to increase the buffer
Third, when channel PSD is comparable with arrival PSD amapacity fromK = 2! to K = 2'3, which is equivalent to the
has significant energy in MF region. our channel modelingcrease ofi,,,, by eight times. In consequence, a significant
needs to match both CDF and PSD functions. These guidelirmesount of energy has been shifted from the LF region into the
can be readily extended from [14]. MF region. Based on the guidelines, one can no longer neglect
Let us take the same downtown Austin trace with thine channel statistics in the MF region. The SMAQ tool is used
directional driving at&, /No = 20 dB andm = 20. Its original to generate a 401-state Markov chain to match both channel
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CDF and PSD functions, at = 20 with the adaptive coding. channel dynamics and simply use an exponential server as the

Again, the queueing solution comparison between the origirfel2nnel model. This is confirmed by the matched queueing

trace and the Markov chain modeling in Fig. 20 shows arplutions in Fig. 21. _ _

excellent agreement over a wide range of utilizations. The measurement-based channel modeling technique devel-
In the third case, we increase the signal strength froﬂ?ed here prow_des us a viable approach for high-layer wireless

E,/No = 20 dB to 30 dB and reinforce the adaptive codin(‘?e'[\’vOrk analysis.

at m = 100 while still fix K at 2'°. As a consequence, the

channel PSD is much reduced. As shown in Fig. 21(a), the IV. CONCLUSION

arrival PSD now becomes dominant over the channel PSDIn this paper, we have characterized the packet-level statis-
From one of the guidelines, one can completely ignore thies of shadowing and multipath fading channel dynamics and
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an example of eight-state circulant. One important feature of

examined their impact on queueing performance under varigteh @ circulant matrix is that all the eigenvalues of @jc
conditions, such as differed#, /N,'s, driving patterns, coding &€ distinct and expressed in closed form

schemes, and buffer capacities. The measurement of channel T I L 1<

statistics are decomposed into three different frequency re- A= VNGF' or d= VN AF (15)
gions, each of which has a significantly different impact on. . ) .

the queueing performance. Given the arrival statistics, chanMdih A = [Ao, A1, -+, Av—1], where, is thelth eigenvalue

statistics, and buffer capacity in a system, we developed fAeQ- F_is @ Fourier matrix with its(i, j)th element given
basic guidelines to capture the important channel statistics34 ?/\/NeXp[__(%”)/N)\/_—l] and F~* = F*, where
channel modeling. In particular, the multipath fading statistids IS the conjugate transpose @. For a stochastic ma-
are found to be negligible as compared to the shadowiff§ We must getd, = 0. Define a complex vectof =
statistics for network performance study. Further, the adao: 51, > Av—1], which can be represented by two real
tive error correction coding scheme is found to be high)€Ctors® = [to, 91, -+, ¢n—1] and§ = [6o,61,---,6n 1]
effective to cope with the slow time variation of a shadowin%gh P = |Bi|* and6; = arg{s;} given —r < §; < 7, Vi.
channel for network performance improvement. Our channbat is, 6; is the principal value of the argument of. We
statistics analysis gives a clear picture to the understandingfiégn have

gueueing performance in wireless network environment. The T TR T - 2
measurement-based channel modeling technique introduced in V=181 = NHF 7 oor 5= VNBE. (16)
this paper further provides a new direction toward the integres PSD is then expressed by

tion of wireless channel modeling and network performance

N—-1
analysis. Future work include the extension of the present =2
: . . : Plw) = 2756 b 17
single channel modeling to the network modeling of multiple (@) Ty 8(w) + zz—% Vubu(w) 7
channels which are statistically shared by multiple users at B
geographically different locations. with
-2\ 1ot
APPENDIX ;tw T oo

This appendix provides the background knowledge dhe first component in (1727x%%6(w), representsic term,
Markov chain construction to match the first and secong¢hich exists due to the positive average arrival rate. In (17),
order statistics of a rate process$t), which in our case is each nonzero eigenvalue contributes a bell-shaped component
the packet service rate process(t) of a multipath fading &;(w) to PSD. Every such component is represented by a bell-

channel. shaped curve located at the center frequencyih with
Consider anN-state MMP defined by its transition ratehalf power bandwidth-2Re{\;} and weighted by the average
matrix Q and service rate vectof = [vo,v1, -, Yv_1], Powery. Hence, the PSD of a circulant modulated process

where~; is the service rate when the Markov chain is in stag€MP) is captuLed be and 1/7, where 1/7 is nonneggtive
1. The autocorrelation function of the rate process is expresgedl. From (15)X is uniquely determined byi. Also v is
by R(r) = ~(¢)v(t + 7). The Markov chain constructed byuniquely determined byj. One can therefore eliminate the
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bell component of\; simply by settingy; = 0. Wheny; =0, [18] W. C. Lau and S. Q. Li, “Traffic distortion and inter-source cross-

the

eigenvalue\ X is called noneffectiveand otherwise correlati(_)n in high-speed integrated network®,Comput. Telecommun.
9 ¢ € Networking vol. 29, pp. 811-830, Aug. 1997.

effective P(w) is generally expressed by the superposition ¢fg; J. ve and S. Q. Li, “Folding algorithm: A computational method for finite
multiple bell components. QBD process with level-dependent transition&EE Trans. Commun.,

Since the steady-state probability of each state in circula[%]

vol. 42, pp. 625-639, Feb. 1994.
W. C. Y. Lee, Mobile Communications Design Fundamentaliew

is equally likely, i.e.,m; = 1/N, Vi, the CDF of CMP, York: Wiley, 1993.
denoted byF(z) = [5 f(y) dy, only depends ory. F(x) [21] H. Ling, “Wireless channel modeling,” [Online]. Available WWW:

is a piecewise multistep function which jumps b¥V at each [22]

http://ling0.ece.utexas.edu/comm/comms.html, 1997.
B. Sklar, Digital Communications Fundamentals & Applications€En-

individual value ofz € 4 in ascending order, as expressed by  glewood Cliffs, NJ: Prentice-Hall, 1988.

[23] S. Lin and D. J. CostelloError Control Coding: Fundamentals and
. Ny Applications. Englewood Cliffs, NJ: Prentice Hall, 1983.
F(x) = tlll)lc}o Pr(’Y(t) < x) = N (18) [24] H. D. Sheng and S. Q. Li, “Spectral analysis of packet loss rate at
a statistical multiplexer for multimedia servicedEEE/ACM Trans.
Networking,vol. 2, pp. 53-65, Feb. 1994.

wheren,, represe_nts the number of amv_al rates?ilress than [25] W. C. Jakes, Jr., EdMicrowave Mobile Communication.New York:
or equal tox. A wide range of CDF functions can be matched  wiley, 1974. .
through the design of, after fixing PSD by)\ and . The [26] S. Q. Li, S. Park, and D. Arifler, “'SMAQ: A measurement-based tool for

traffic modeling and queueing analysis, Part —Design methodologies

variance of CMP is equal to the average arrival poWgT, ;. and software architectureJEEE Commun. Mag.yol. 36, pp. 56-65,
Refer to [13] for the detail construction of CMP to match the = Aug. 1998.

PSD and CDF of a given random process.

(1]
(2]
(3]
(4]
(5]

(6]
(7]

(8]

(9]
[10]
[11]

(12]

[13]

[14]

[15]

[16]

[17]

[27] , “SMAQ: A measurement-based tool for traffic modeling and
queueing analysis, Part ll—Network applicationdEE Commun.

Mag., vol. 36, pp. 66—77, Aug. 1998.
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