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ABSTRACT

The loss behavior of wireless networks has become the

focus of many recent research efforts. Although it is

generally agreed that wireless communications

experience higher error rates than wireline, the nature of

these lossy links is not fully understood. This paper

describes an effort to characterize the loss behavior of the

AT&T WaveLAN, a popular in-building wireless

interface. Using a trace-based approach, packet loss

information is recorded, analyzed, and validated. Our

results indicate that WaveLAN experiences an average

packet error rate of 2 to 3 percent. Further analysis

reveals that these errors are not independent, making it

hard to medel them with a simple two-state Markov

chain. We derive another model based on the

distributions of the error and error-free length of the

packet streams. For validation, we modulate both the

error models and the traces in a simulator. Trace-driven

simulations yield an average TCP throughput of about 5

percent less than simulations using our best error model.

1. INTRODUCTION

With the proliferation of portable computers and wireless

networks in recent years, many researchers have focused

on designing better mobile systems. This has led to a

growing interest in characterizing the loss behavior of

many wireless technologies, including wireless LANs

and packet radio networks. While it is well known that

wireless links have higher error rates than their wired

counterparts, the detailed characteristics of wireless

errors are not well understood due to their inherent

dependence on complex radio wave propagation.

Characterizing the loss behavior is an important problem

since it is one of the few key parameters that affect all

levels of the network stack.

Due to the large number of protocols at different

network layers, it is often infeasible to build and measure

all of them. A better alternative is to trace the behaviors

of existing implementations and apply the lessons

learned to evaluate new designs. From wireless network

traces (Noble, Nguyen, Satyanarayanan, and Katz 1996),
we can improve our understanding of the wireless
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channel behavior, develop realistic models, and validate

them. Traces also provide us a way to reproduce realistic

network and mobile environments for comparing

protocols and algorithms.

The focus of this paper is on the tracing and modeling

of wireless channel errors. Although the uniform bit error

rate model has often been used to simulate Iossy links, it

is inadequate to capture our measurements of in-building

wireless errors. Our goal is to produce a realistic model

that is not too difficult to implement. The resulting model

contains several mathematical expressions folr the error

and error-free length extracted from many packet error

traces. Validation of this model involves comparing the

simulated TCP throughput with other models and traces.

The remainder of this paper is organized as follows.

In section 2, we provide some background on wireless

errors and the testbed for this study. Our trace-based

approach consists of three phases, described in three

separate sections along with the associated chdta. Section

3 describes the trace collection and presents the packet

error rate data. In section 4, the errors are further

analyzed and modeled. Finally, we discuss the validity of

our models in section 5.

2. BACKGROUND

Wireless errors are mainly caused by the inability of the

receiver to distinguish the transmitted signal from the

background noise. The radio propagation patterns and

their effect on receiver signal-to-noise ratio (SNR) have

been studied for both the in-building and outdoor

environments (Andersen, Rappaport, and Yeshiva 1995),

(Cox and Leek 1975), (Eckhardt and Steenkiste 1996).

The detrimental effect of wireless errors on reliable

transport protocols has resulted in many efforts to

improve the performance of TCP (Bakre and Badrinath

1995), (Balakrishnan, Seshan, and Katz 1995).

Since wireless errors highly depend[ on the

environment and the network device, characterizing

them requires some knowledge of the testbed. The

following subsections describe our testbeci and the

wireless interface that we use in this study.

597



598 Nguyen et al.

2.1 Testbed

The measurements presented in this paper were collected

from the BARWAN wireless overlay network, which is

built from many commercially available networking

technologies. The available network interfaces include

915 MHz and 2.4 GHz AT&T WaveLAN, Metricom,

CDPD, infrared, and DirecPC. The mobile hosts (MI-I)

are IBM Thinkpad laptops and the base stations (BS) are

Dell PCs. Both the mobile hosts and base stations are x86

computers running a common UNIX operating system,

BSD/OS version 2.1. Although the base stations and

mobile hosts can have multiple wireless interfaces, we

only evaluate the 915 MHz WaveLAN in this study.

Having complete control over this network allow us to

obtain many device-specific data that are valuable for

channel modeling.

2.2 WaveLAN

WaveLAN is a commercial wireless network interface

operating in the 902-928 MHz ISM (Industrial,

Scientific, and Medical) band (AT&T 1993), (Kohno,

Meidan, and Milstein 1995). This direct sequence spread

spectrum modem has a spreading factor of 11 chips per

bit and a maximum bandwidth of about 2 Mbps.

WaveLAN does not employ any forward error correction

or retransmission at the device level, which makes it

appropriate for studying wireless errors.

Medium access control (MAC) in WaveLAN

resembles that of an Ethernet. Based on CSMA, it

constantly monitors the state of the wireless channel.

Before each transmission, the MAC must wait until the

end of the current transmission plus a small delay known

as the WaveLAN Inter-Frame Space (wIFS). Since it is

difficult to detect a collision while transmitting,

WaveLAN implements a collision avoidance scheme,

which is different from the CSMA/CA being proposed

IEEE 802.11 committee (Chen 1994). After the WIFS,

the MAC waits for a random number of antenna slots

less than an initial back-off value. If the channel becomes

busy before its slot, the MAC doubles its back-off

window and continues to monitor the channel for the

next contention period. This back-off process is repeated

for a maximum of 15 times before the packet is dropped.

The WaveLAN link is slightly asymmetric due to
differences in implementation of the base station’s ISA

interface and the mobile host’s PCMCIA counterpart.

The ISA adapter has an Intel 82586 CSMA/CD LAN

controller, while the PCMCIA version has the newer

82593 chip. Although both interfaces have 0.5

nanosecond bit-times and 32-bit inter-frame space, the

length of the antenna slot for back-off purpose is

significantly different: 12 bit-times for ISA and 32 bit-

times for PCMCIA. To partially make up the longer

antenna slot, the PCMCIA controller sets its initial back-

off window to 16 slots (512 bit-times) instead of the

ISA’s 32 (384 bit-times). The larger average delay for

PCMCIA leads to lower throughput.

Like many other wireless interfaces, WaveLAN

provides access to the receiver signal strength

information. The three signal measurements for each

packet are signal level, noise level, and signal quality.

The signal level is a 6-bit measurement derived from the

receiver’s automatic gain control (AGC) setting at the

beginning of each transmission. Similarly, the noise level

is measured immediately after the end of the

transmission, when no WaveLAN interface within

detectable range can transmit. The signal quality is the 4-

bit measurement derived from the information used for

antenna selection at the beginning of packet reception.

3. TRACE COLLECTION

Reproducing accurate loss behavior for wireless network

is challenging because the quality of the wireless channel

can vary dramatically over time and space. To handle

this problem, we use a trace-based approach consisting of

three phases: trace collection, analysis, and validation. In

the trace collection phase, a large number of traces are

collected for many different scenarios. The analysis phase

involves extracting the data of interest, such as packet

errors, and modeling them. In the validation phase, the

models are simulated and compared with the traces and

measurements.

This section describes the collection phase. To collect

traces for many different scenarios, we implement a

general purpose trace engine and workload generator.

The following two subsections describe the trace

recording process and workload generation. We then

investigate the effects of traftlc parameters including

packet size and transfer rates. Finally, we examine the

effect of distance on packet error rate.

3.1 Trace Recording

The network tracing facility for both the base station and

the mobile host is transparent to the applications, as

shown in Figure 1. It contains two key components: the

trace agent and trace collector. The trace agent resides

in the kernel where it can record data that is either
inaccessible or expensive to obtain at the user level.

Kernel hooks are added to the network device drivers to

pass each received packet and device information to the

trace agent. These data are periodically extracted from

the kernel buffer and saved to disk by the user-level trace

collector.
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Figure 1: Network Trace Collection

When the trace collection program is executed, it

opens a network tracing pseudo-device to start the kernel

trace agent. The kernel trace agent then puts the wireless

network interfaces (NI) into promiscuous mode to

capture all packets, similar to the Berkeley Packet Filter

(McCanne and Jacobson 1993). Device-specific data such

as signal level, noise level, signal quality, and error

status are also recorded for post-processing and analysis.

3.2 Workload Generation

To generate traftlc for error measurements, UDP is

preferred over TCP because it has no error-recovery and

connection establishment mechanisms. Each UDP packet

is speeiall y formatted to include information for error

detection, such as a sequence number. For our modeling

of packet errors, we deeided to hold transmission rate and

packet size constant such that our models can be

converted into time-based ones. The effects of these two

parameters are discussed in the following subsections.

To simplify the analysis process, each trace captures a

single traffic stream. We also pay special attention to

reduce the interference of the trace workload and other

traffic. Although the UDP packets need not be received

for the sender to make progress, a standard kernel would

send out a “port unreachable” error message in reply to

each UDP packet whose destination port has no user-

level listener. A kernel hook is added to suppress these

interfering packets while collecting traces.

3.3 Effect of Transmission Rate

Due to the asymmetric nature of WaveLAN, and most

wireless networks in general, each direetion of the link is

traced independently. Our measurements indicate that

the base station can send large UDP packets of more than

1000 bytes at the maximum throughput of about 1.6

Mbps. Using a similar packet size, the PCMCIA

interfaces only achieve the maximum throughput of

about 1.2 Mbps. This lower transmission rate is mainly

due to the differences in implementation of the radio
interfaces discussed in section 2.2. Due to limited space,

we only present the analysis for the higher bandwidth

down-link (base station to mobile host).
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Figure 2: Packet Error Rate vs. Transmission Rate

To investigate the effect of the transmission rate, we

use UDP streams with rates from 0.8 to 1.6 Mbps. The

packet size and the distance are fixed at 14001bytes and

about 70 feet, respectively. Each data point in Figure 2

represents a single 1000-second trace. This plot reveals

little correlation between the packet error probability and

the transmission rate. Since the higher transmission rate

does not lead to an increase in error probability, we will

use nearly maximum transmission rates to capture more

channel errors.

3.4 Effect of Packet Size

A similar experiment is conducted to examine the effect

of packet size on error rate. In this experiment, the

transmission rate is held constant at 1.5 Mbps while the

packet size is varied tiom 100 bytes to 1400 bytes. To

avoid fragmentation, packet size is chosen to be less than

WaveLAN’s maximum transfer unit of 1500 bytes.
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Figure 3: Packet Error Rate vs. Packet Size

The resulting packet error rates are plotted on the

semi-log graph in Figure 3. Since the points in the graph

lie on a straight line, we infer that the packet error rate

increases exponentially with the packet size. Our

regression analysis shows that packet error rate doubles

for every 300-byte increment of the packet size.
The results of this experiment does not directly

influence the choice of packet size for error modeling in
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section 4. For the data to be modeled, we choose to fix

the packet size at 1400 bytes because we believe it is

more representative of our WaveLAN network.

3.5 Effect of Dkdzmce

Another parameter that is generally believed to have high

correlation with signal level and error rates is the

distance between the sender and receiver. In free space,

the power of electromagnetic radiation varies inversely

with the square of distance, making distance an ideal

indicator of signal level as well as loss rate. In practice,

the imperfect propagation environment can render the

inverse-squared relationship useless.
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Figure 4: Packet Error Rate vs. Distance

Figure 4 plots the packet error rate measured at

various distances in our building. Each data point

represents UDP transfer totaling about 108 bytes over

three 1000-second traces for a single room. We infer

from the graph that packet error rate is an exponential

function of distance. The regression analysis reveals that

packet error rate doubles for every increase of 17 feet.

Table 1: Parameters of Distance Experiment

I10 0.000634

40 0.001955

I70 0.003271

90 0.021622

+

110 0.032171

130 0.060431

average 0.024735

mobilel 0.032711

:error prob error length error-frea length

stdev mean stdev mean stdev

0.000229 1.000 0.000 1749.59 732.72

0.000725 1.846 0.227 1023.43 334.40

0.001086 2.005 0.210 574.56 148.45

0.010412 2.428 0.018 122.89 58.99

0.014786 2.540 0.482 87.26 39.75

0.037123 2.298 0.290 28.90 8.82

0.031554 2.054 0.564 549.37 699.39

0.019324 2.365 0.089 64.60 37.36

Table 1 summarizes the data for the distance

experiment. It contains the mean and standard deviation

of the three key packet error characteristics: error rate,

error length, and error-free length. The distance of less

than 20 feet represents the single room scenario, where

the sender and receiver have line-of-sight (LOS). The

“average” row contains the averages of the data collected

for all the distances. Data in the “mobile” row are

collected while the experimenter is moving at the speed

of about 5 feet per second inside our building. The packet

error probability for this case is about 30% higher than

the average, presumably because the presence of mobility

produces more errors.

The error length is defined to be the number of

packets that are lost consecutively. Similarly, the error-

free length is number of packets that are successfidly

received between two adjacent bursts of error. This can

also be translated into the inter-arrival time of errors.

The average error length is 2 to 3 packets for most

distances. The only noticeable exception is the same-

room LOS scenario, which produces only single-packet

error bursts. The average error-free lengths for different

distances vary by two orders of magnitude and have large

standard deviation.

4. MODELING WIRELESS ERRORS

The loss characteristics of wireless channels have been

empirically observed to be bursty due to various fading

effects. As the result, evaluating wireless network

protocols with a uniform error model will likely produce

inaccurate results. We investigate several models to

capture the burstiness of wireless errors. Starting with the

Fritchman binary error model (Fritchman 1967), we

develop two models for our trace data. In the following

subsection, we describe the two-state Markov model.

Following that is the analysis of the error and error-free

distributions to improve the two-state model.

4.1 Two-state Markov Model

The basic error model contains two states: error and

error-free, each having its own distribution. When the

channel is in the error state, any packets sent would be

either lost or corrupted. The opposite is true for the error-

free state. Being a Markov model, the duration of staying

in each state can be expressed in term of transitional

probabilities, as shown in Figure 5. This is the most

simple form of the multiple-state Fritchman model.

Figure 5: Two-state Error Model

In our derivation of parameters for the two-state

Markov model, we label the error state E and error-free

state G. The associated transitional probabilities, pc~ and

pEG, can be computed from the average error-free length
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LG and error length LE. Since both L~ and LG are

geometrically distributed, the transitional probabilities

can be expressed by the following formulas (Jain 1991):

1 1

PEG = ~ and PGE = ~
E G

The state transitions in the Markov model are

memory-less. This nice property allows the transitions to

be decided on an individual packet basis. If the length or

duration of staying in each state is needed, the inverse of

the cumulative distribution function (CDF), F(x), can be

used. By substituting the Z-F(X) of the geometric

distribution with a random number u uniformly

distributed from O to 1, the length x of staying in a state

with the leaving probability p is:

log(u)

x = log(l - p)

Table 2: Parameters for Two-state Markov Model

m

Table 2 provides the error and error-free length

averaged from about 30 1000-second traces that are used

for modeling purpose. The transmission rate and packet

size are fixed at 1.5 Mbps and 1400 bytes respectively,

while the distance changes. Since the standard deviations

for these parameters are relatively large compared to the

means, this model will likely be inaccurate. This

motivates us to find more accurate models without

sacrificing complexity. The following section describes

one such model for the same set of trace data.

4.2 Improved Two-state Model

Although the two-state Markov model can describe

burstiness more accurately than the uniform error model,

it cannot capture all loss behavior. The main limitation is

the underlying assumption that the length distribution for

each state is geometric. Our results indicates that neither

the error and error-free length distributions is geometric.

The error length distribution is plotted on a semi-log

graph in Figure 6. The dash line is the geometric fit for

this data set. Our key observation is that almost 90

percent of all error bursts have length of less than 4

packets. This suggests that we should split error length

distribution into two segments. Each segment is fitted

with an exponential curve (straight lines on the semi-log
graph). Since the best-tit curves do not intersect the

coordinate (O,1), exponential terms must be multiplied by

a constant factor ek. The resulting CDF and its inverse

that expresses the discrete length of error are:

1– F(x)= e-x’aek

x = [a(k – ln(l - F(x))l

Since these expressions are derived from thlose of the

exponential distribution, we will label them

Exponential *. The parameters a and k for each segment

can be separately obtained using linear regression on x

and natural log of I-F(x). For this type of segmented

curves, the splitting points must also be specified. These

are the 1-CDF values since we are interested it the

inverse function. The parameters for the error length

distribution are presented in Table 3.
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Figure 6: Error Length Distribution

The characteristic error-free length distribution is

significantly different from that of the error length. In

Figure 7, the 1-CDF is plotted on a log graph to provide

more detail of the at the lower range. To avoid having an

excessive y complicated model, we decided to break this

curve into 3 segments: 1 to 37, 37 to about 330, and the

rest. The data points for the first two segments seem to

fall on two different straight lines. Since the points of

these segments fall on straight lines in this graph, they

can be expressed by the following formula

1– F(X)= x-ak

This expression describes the Pareto distribution. The

inverse function that describes the error-free length is:

‘=F(l-F(X))-’l
The parameters a and k for the first two segments can

be separately obtained by applying linear regression on

the natural log of both x and (I-F(x)).

The third segment of the error-free length distribution

is a concave curve. On a log graph, this type of curve

implies exponential decaying function. Therefore, we use

the Exponential* expressions presented earlier to

describe this segment. In Figure 7, our best fit curve with
3 segments is close enough to the actual distribution that

it is almost invisible.
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Figure 7: Error-free Length Distribution

Table 3: Parameters of the Improved Model for the Down-link

segment

1 to 37

38 to 330

331+

lto3

‘AA

Distribution 1-CDF a k R2

Pareto 1 0.183398 0.977663 0.974367

Pereto 0.504178 0.566806 3.053316 0.996406

Exponential’ I 0.113339 925.719378 0.109955 0.933672

:Exponential* 1 1.152952 0.562514 0.999606

Exponential*I 0.050955 7.753400 -2.4609131 0.938160

00

Table 4: Parameter of the Improved Model for the Up-link

MHto BS segment Distribution 1-CDF a k R2

Error-free 1 to 36 Pareto 1 0.217217 1.032932 0.911180

37 to 300 Pareto 0.474259 0.780791 7.011119 0.993424

301+ Exponentiet* 0.079019 441.524510 0.666545 0.935606

Error lto3 Ekponentk4’ 1 1.152952 0.562514 0.999606

4+ Exponential* 0.042026 5.144594 -2.391950 0.928936

Table 3 summarizes all the computed parameters for

our improved model. This model requires 13 parameters:

five pairs of a and k, and three 1-CDF values. For each

pair a and k obtained from the regression of the 1-CDF

values, there is an associated coefficient of determination

R2. This value is the ratio of the regression sum of

squares (SSR) to the total sum of squares (SST), which is

an indication for the quality of fit. Our model fits the 1-

CDF of the experimental data with coefficients of

determination greater than 90%.

Wireless loss behavior for the up-link closely
resembles that of down-link. The improved two-state

model for the up-link channel also contains 2

Exponential* curves for the error length and a

combination of 2 Pareto, 1 Exponential* for the error-

free length. Table 4 provides the model parameters

computed for the up-link. Since the error and error-free

distributions are very similar for both directions, we have

higher confidence that the errors really occur in the

wireless channel.

5. VALIDATION

Validation is the last of the three phases for our trace-

based approach to modeling. Since our primary use of the

channel models is evaluating the impact of the errors on

higher-layer network protocols, we choose TCP

throughput as the metric for validating our models. The

approach that we take is validating the models in the

network simulator ns (McCanne and Floyd 1996). In the
following subsections, we describe the simulation of

errors in ns and provide a quantitative comparison of all

the results.

5.1 Simulating Packet Errors

To evaluate the error models for WaveLAN, we made

several key enhancements to ns, in particular, the
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wireless channel and WaveLAN MAC protocol. We also

implement the error models to generate errors for the

channel.

Our simulation setup consists of 2 WaveLAN nodes.

A 1000-second file transfer using TCP is done from the

sender to the receiver. In this setup, we simulate three

error models: uniform packet error rate, twe-state

Markov, and our improved two-state. The uniform packet

error rate of 0.01549 is computed from the average error

and error-free length. Other parameters for the two-state

Markov and the improved model are taken from Table 2

and Table 3.

Trace modulation contains two steps. The first step is

extracting the time and duration of the errors from the

traces. In the second step, the errors are replayed in the

channel at the simulated time corresponding to the

traces. For the validation purpose, we collect 10 new

traces from various locations and replay the errors in the

simulation setup described above. Next, we average the

TCP throughputs for all the trace-driven simulations and

compare it with the throughputs of the error models.

5.2 Quantitative Comparison

Table 5: TCP Throughput for Error Models

Throughput relative

(MbPs) difference

Uniform 1.5134 0.213429
Markov 1.4054 0.126841

Improved 1.3071 0.047995
Trace 1.2472 0.000000

Table 5 lists the TCP throughputs for the three models

and the trace modulation. Having the trace-driven

simulation throughput as the reference, the relative

difference is computed for each model. The improved

model produces throughput of about 5’?ZOhigher than that

of trace-driven simulation. The Markov and uniform

error models differ by 13% and 21 Yo, respectively. The

higher TCP throughput for the Markov model confirms

that the error lengths generated by the this model (shown

in Figure 6) are shorter than the real ones.

6. CONCLUSION

We have showed that trace-based approach is valuable

for modeling wireless errors. The large number of traces

that we have collected provide a good basis for

developing and validating several wireless error models,

From the trace data, we derive the parameters for two

variations of the two-state error model. Although the

Markov model is much simpler, it produces TCP
throughput that differs by 13% from the traces. The
improved model with 13 parameters significantly

improves the accuracy, only 590 from the traces. While

the simple Markov model may be adequate for some

applications, the higher accuracy of the improved model

will justify its complexity for others.

Although it is our main goal to provide the best

channel error model to study all network prctocols, the

results obtained thus far are more suitable for evaluating

higher-level network protocols. This is partly due to our

immediate interest in TCP performance evaluations. We

believe it is possible to improve this model to study link-

level and MAC protocols by using smaller packet sizes in

tracing.

7. FUTURE WORK

Using a similar trace-based approach, we intend to

characterize the behavior of the 915 MHz Metricom

packet radio network and its interactions with the co-

located WaveLAN network in the near future. Another

goal is to improve our understanding of the mobility

effects on various network characteristics such as errors

and latency.
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