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Abstract

Techniques for modeling and simulating channel conditions play an
essential role in understanding network protocol and application behavior.
In [11], we demonstrated that inaccurate modeling using a traditional ana-
lytical model yielded significant errors in error control protocol parameters
choices. In this paper, we demonstrate that time-varying effects on wireless
channels result in wireless traces which exhibit non-stationary behavior
over small window sizes. We then present an algorithm that divides traces
into stationary components in order to provide analytical channel models
that, relative to traditional approaches, more accurately represent charac-
teristics such as burstiness, statistical distribution of errors, and packet loss
processes. Our algorithm also generates artificial traces with the same sta-
tistical characteristics as actual collected network traces. For validation,
we develop a channel model for the circuit-switched data service in GSM
and show that it: (1) more closely approximates GSM channel characteris-
tics than a traditional Gilbert model and (2) generates artificial traces that
closely match collected traces’ statistics. Using these traces in a simulator
environment enables future protocol and application testing under different
controlled and repeatable conditions.

1 Introduction

As communication networks evolve, the design of communi-
cation protocols increases in complexity. Evaluating the perfor-
mance of existing networks provides insights into techniques for
optimizing future communication protocols. The most common
techniques include simulation, analysis of empirical data, and an-
alytical models (e.g., channel models). Accurate modeling of net-
work events, especially the error behavior, at link layer and above
is essential to the understanding of network behavior and to the
design of communication protocols. For example, a detailed un-
derstanding of the packet loss process and burstiness of the errors
is necessary for the proper design and parameter tuning of error
control protocols, such as Automatic Repeat reQuest (ARQ) pro-
tocols.

Streaming audio and video multimedia applications can also
benefit from a better understanding of the underlying network be-
havior. For example, video and audio codecs can perform real-
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time predictive rate control by using a model of network traffic
characteristics to estimate traffic conditions in real-time.

The traditional network modeling approach to error modeling
is to create a Gilbert model [17] (i.e., a two state discrete Markov
chain) based upon collected network traffic traces. Using this
model, one can then dynamically generate artificial network traces
for the network under study and use the traces to simulate, and
thus, better understand the performance of existing and new net-
work protocols and applications. These traces provide network
protocol and application developers with ease of use and repeata-
bility, two critical characteristics for developing and improving
network and application performance. More importantly, for new
networks that are under development (or for which there are only
limited prototype facilities), it is often difficult to collect a reason-
able amount of traces or run experiments. By generating synthetic
traces that simulate the network being tested, multiple users can
simultaneously gain network access and perform experiments.

Unfortunately, as we will show, the Gilbert model has sev-
eral significant shortcomings in the accuracy of its error modeling,
which directly affects the validity of results based upon traces gen-
erated by a Gilbert model. Models based upon Markov processes
require that the error statistics remain constant over time. Many
networks experience time varying effects, such as congestion-related
losses. Wireless channels, in particular, experience over small time
periods effects such as Raleigh fading, multipath fading, shadow-
ing, etc. While previous work has not focused on stationarity of
traces, we hypothesize that wireless traces exhibit non-stationary
behavior over small window sizes, and that by isolating and ana-
lyzing stationary trace segments, more accurate models can be de-
veloped. Utilizing a previously published, but not widely known
algorithm for testing stationarity [2], we tested 215 minutes of
wireless traces and confirmed its non-stationarity with a derived
window size. This implies that traditional stochastic analysis of
wireless traces are likely to be less accurate than ideal.

Thus, we propose and evaluate a novel algorithm, the Markov-
based Trace Analysis (MTA) algorithm, for the design of channel
error models. Our approach is to derive a statistical constant from
the wireless trace, and use this constant to divide the previously
non-stationary trace into stationary subtraces representing lossy
and error-free segments of transmission. By analyzing the length
distributions of these segments, we can effectively characterize the
transitions between them, and create a model that more accurately
represents the original trace.

In practice, this MTA algorithm allows a more accurate analy-
sis of network traces which accounts for their non-stationary be-
havior. This characteristic makes MTA a general purpose algo-
rithm, meaning that it can be applied to network traces such as
wireless traces which experience different error statistics over time.
However, the purpose of this work is not to show that the MTA al-
gorithm is general purpose, but to argue that the MTA algorithm
generates accurate analytical models for wireless channels.



We validate the benefits and accuracy of the MTA algorithm
by applying it to 215 minutes of GSM digital wireless cellular net-
work [15] data traces collected at the reliable link layer (Radio
Link Protocol layer [5, 7]) to generate a model we call the MTA
GSM channel model. We then show that, unlike traces generated
by the Gilbert model, artificial MTA model network traces have
the same statistical properties as traces collected from the actual
network. Such traces will provide more accurate simulations of
the network being tested, yielding results that more closely match
the results obtained on actual networks.

In particular, we generate artificial traces using both the MTA
and Gilbert models, and perform retrace analysis [11] on these ar-
tificial traces. Retrace analysis emulates an enhanced RLP layer
using a fixed data frame size and fixed per frame overhead (e.g.,
checksums, sequence numbers, etc.), and calculates the predicted
throughput over a range of fixed RLP frames sizes. In our en-
hanced RLP implementation, frame sizes are multiples of the phys-
ical radio block size of 30 bytes � . For a given frame size, there is
a trade-off between the increased throughput from reducing over-
head and the retransmission delay caused when a radio block of an
RLP frame is lost and the entire frame is retransmitted. In other
words, a greater frame size leads to (1) lower overhead, and (2)
longer retransmission delay (more radio blocks have to be retrans-
mitted) when a radio block is corrupted. Thus, throughput perfor-
mance results for each frame size are highly correlated with a col-
lected or synthetic trace’s error statistics. In [11], we used retrace
analysis to show that for bursty error traces (where errors tend to
occur in clusters), larger frames yield higher throughput. Further-
more, we showed that incorrectly assuming an even distribution of
errors in GSM leads to the wrong choice of optimal frame size.

These results show that the distribution of errors within traces
has a significant influence on models, analysis, and simulations
based upon such traces. This conclusion is especially true when
the goal is to artificially generate traces for the design, simulation,
and analysis of new networking protocols. To replicate and further
explore the results from our earlier work, we generate an artificial
trace that we call even error distribution (EED) trace, which has
the same error rate as collected traces, but with an even error dis-
tribution, (i.e., errors are individual events, isolated, and have a
constant distance between each other).

The rest of this paper is organized as follows: We start by
discussing related work in the next section. Section 3 provides
background information about the GSM’s Circuit-Switched Data
(CSD) service and an overview on Discrete Time Markov Chains.
Next, in Section 4, we describe our measurement platform for col-
lecting frame level error traces on the GSM wireless link. Then
Section 5 shows the development of the MTA algorithm, followed
by Section 6, where we develop two analytical models for GSM
wireless traffic: the MTA model and the Gilbert model. In Sec-
tion 7, we present our algorithm for generating artificial traces and
evaluate the MTA algorithm by comparing the traffic statistics of
the collected and artificial traces. We conclude and discuss our
plans for future work in Section 8.

2 Related Work

Several researchers have explored ways of characterizing the
loss process of various channels. Bolot et al. [3] use a characteri-
zation of the loss process of audio packets to determine an appro-
priate error control scheme for streaming audio. They model the
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loss process as a two-state Markov chain, and show that the loss
burst distribution is approximately geometric. Yajnik et al. [20]
characterize the packet loss in a multicast network by examin-
ing the spatial (across receivers) and temporal (across consecutive
packets) correlation in packet loss. Of particular interest is their
modeling of temporal loss as a third order Markov chain. Both
these efforts analyze the loss process of traces with static error
statistics (i.e., the error rates do not vary over time). However, our
work addresses the additional challenge of modeling traces with
time-varying error statistics.

There is also interesting related work in wireless traffic model-
ing. Nguyen et al. [16] use a trace-based approach for modeling
wireless errors. They present a two-state Markov wireless error
model, and develop an improved model based on collected Wave-
LAN error traces. Building on this, Balakrishnan and Katz [1] also
collected error traces from a WaveLAN network and developed a
two-state Markov chain error model (i.e., Gilbert model). Zorzi
et al. [21] also investigates the error characteristics in a wireless
channel. They compare an independent and identically distributed
(IID) model to the Gilbert model, and claim that higher order mod-
els are not necessary. Their results are drawn by applying these
models to artificial traces generated by assigning a fixed-average
burst length and a constant bit error rate.

While these previous works confirm that the Gilbert model im-
proves upon the simple IID model, we offer proof in this paper that
the Gilbert model has several significant shortcomings in its error
modeling accuracy. Furthermore, we argue that there is a need to
develop a more accurate model based on real world statistics that
better describes and handles time-varying wireless channel error
characteristics. Previous work such as that done by Yajnik et al.
modeled loss processes using higher-order Markov chains for im-
proved accuracy, but was limited to stationary traces. We show
that traces on wireless links are non-stationary, and provide an al-
gorithm that successfully models such behaviour.

3 Background

In this section we present a brief background on the technology
behind circuit-switched data in GSM networks. We also define
Discrete Time Markov Chains (DTMC) and some of their relevant
properties.

3.1 Circuit-Switched Data in GSM

The Global System for Mobility (GSM) wireless digital cel-
lular network is a second generation cellular network, providing
nearly 700 million subscribers with global roaming capabilities in
several hundred countries. GSM implements several error control
techniques, including adaptive power control, frequency hopping,
Forward Error Correction (FEC), and interleaving. The primary
uses of the GSM network are for Circuit-Switched Voice service
(CSV) and Short Message Service (SMS). However, an increas-
ing number of subscribers are using GSM’s Circuit-Switched Data
service (CSD), which provides an optional reliable link layer pro-
tocol, the Radio Link Protocol (RLP). We provide a brief summary
below; more details about GSM, the CSD service, and RLP can be
found in [15].

GSM is a TDMA-based (Time Division Multiple Access) circuit-
switched network. At call-setup time, a mobile terminal is as-
signed a user data channel, defined as the tuple
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carrier frequency

number, slot number � . The slot cycle time is 5 milliseconds on
average. This timing allows 114 bits to be transmitted in each



slot, yielding a gross data rate of 22.8 Kbit/s. The fundamental
transmission unit in GSM is a radio data block. A Forward Er-
ror Correction (FEC) radio data block is 456 bits, representing the
payload of 4 time slots. In GSM-CSD, the size of an unencoded
data block is 240 bits, resulting in a raw data rate of 12 Kbit/s (240
bits every 20 milliseconds) [6].

Interleaving is a technique that is used in combination with
FEC to combat burst bit errors. Instead of transmitting a data block
in four consecutive slots, the block is divided into smaller frag-
ments. Fragments from different data blocks are then interleaved
before transmission. The interleaving scheme chosen for GSM-
CSD interleaves a single data block over 22 TDMA slots [8]. A
few of these smaller fragments can be completely corrupted while
the corresponding data block can still be reconstructed by the FEC
decoder. The primary disadvantage of this deep interleaving is
that it introduces a significant one-way latency of approximately
90 milliseconds

�
. This high latency can have a significant adverse

effect on interactive protocols [12].
RLP [5, 7] is a full-duplex logical link layer protocol that uses

selective reject and checkpointing for error recovery. The RLP
frame size is fixed at 240 bits aligned to the above mentioned ra-
dio data block. RLP introduces an overhead of 48 bits per RLP
frame, yielding a user data rate of 9.6 Kbit/s in the ideal case (no
retransmissions)

�
. RLP transports user data as a transparent byte

stream (i.e., RLP does not “know” about IP packets). However,
RLP may lose data if a link reset occurs (e.g., after a maximum
number of retransmissions of a single frame has been reached).

3.2 Discrete Time Markov Chains

A Discrete Time Markov Chain (DTMC) [17] is a random pro-
cess
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that takes values in a discrete space � . A

DTMC is defined by its memory and its transition probabilities
and is characterized as follows,
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transition probabilities, and
8

defines the memory.
To calculate the memory of a DTMC, we find the order of the

Markov chain as first proposed in [14]. To aid in determining the
order of the Markov chain, we introduce the concept of condi-
tional entropy. The conditional entropy is an indication of the ran-
domness of the next element of a trace, given the past history. We
determine the amount of past history necessary by calculating the� CJI order entropy for

1K3 � 3ML
, where

L
is an upper bound

on the maximum amount of history we want to record. We chooseL
to be N because maintaining history for O!P or 64 states yields

a reasonable level of implementation and processing complexity.
An � CJI order entropy of



indicates that knowing the last � ele-

ments of the chain totally predicts the next element on the chain.
As the entropy value increases, there is more randomness in the
next element on the chain. We follow the same procedure used by
Yajnik et al [20] to calculate the conditional entropy for each value
of � :Q

Note that voice is treated differently in GSM. Unencoded voice data blocks have
a size of 260 bits and the interleaving depth is 8 slots.R

Note that the transparent (without RLP) GSM-CSD service introduces a wasteful
overhead for modem control information, reducing the user data rate to 9.6 Kbit/s.
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Given the implicit tradeoff between entropy and complexity of
the Markov model, we choose the order of the Markov chain

8
,

such that we gain the minimum entropy possible at an acceptable
complexity level. As entropy decreases, the order

8
increases,

meaning the number of states (i.e., O�r ) increases exponentialy.

4 Data Collection

In this section, we first introduce the concept of frame error
traces. Then we describe the measurement platform we developed
to collect these traces.

4.1 Frame Error Traces

An accurate representation of a wireless channel’s error charac-
teristics for a given time period can be captured by a bit error trace.
A bit error trace contains information about whether a particular
bit was transmitted correctly (i.e., a “1” represents a corrupted bit,
while a “0” represents a correctly transmitted bit). The average Bit
Error Rate (BER) is the first-order metric commonly used to de-
scribe such a trace. The same approach can be applied on a frame
level instead of on a bit level. A frame error trace consists of a
binary sequence where each element represents the transmission
state of a data frame. There are two frame states, a “1” represents
a corrupted data frame, while a “0” represents a correct data frame.
Corrupted frames are detected using an error detection code (e.g.,
Cyclic Redundancy Check). In this paper, we refer to frame error
traces simply as traces. We also use the Frame Error Rate (FER)
of a trace to define the average rate of corrupted data frames. For
a trace, we define an error burst to be a run of consecutive 1’s, and
an error-free burst as a run of consecutive 0’s.

We have collected traces under several different scenarios. As
shown in Figure 1, we vary the movement of the mobile host
(fixed, walking, and driving) while keeping the other endpoint
fixed. We collected 215 minutes of traces in a fixed environment,
where the mobile host’s signal strength was below 4 on a scale of
1 to 5. In the following sections, we refer to this trace as the GSM
trace. In Section 6, we use the GSM trace to develop an analyt-
ical traffic model for RLP. Note that the error characteristics we
have measured in these traces are only valid for the particular FEC
and interleaving scheme implemented in GSM’s Circuit Switched
Data network (see Section 3.1). To analyze other types of network
channels, the first step is to collect frame or packet level traces and
then to apply the analysis described below.

4.2 Measurement Platform

We depict our measurement platform in Figure 1. A single-
hop network running the Point-to-Point Protocol (PPP) [18] con-
nects the mobile host to a fixed host that terminates the circuit-
switched GSM connection. We used the sock tool [19] to generate
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Figure 1. The GSM network and measurement platform.
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Figure 2. The separation of an error trace into two stationary traces.

traffic on the link. To collect traffic traces at the RLP layer, we
ported the RLP protocol implementation of a commercial avail-
able GSM data PC-Card to BSDi3.0 UNIX. In addition, we de-
veloped RLPDUMP, a protocol monitor tool for RLP. RLPDUMP
logs whether or not a received frame could be correctly recovered
by the FEC decoder. This determination is possible because ev-
ery RLP frame corresponds to an FEC encoded radio block (see
Section 3.1). Thus, a received block suffers an error whenever the
corresponding RLP frame has a frame checksum error. We used
sock to generate bulk data traffic and used RLPDUMP to capture
frame error traces.

5 The MTA Algorithm

The basic concept behind the MTA algorithm is the assumption
that a trace with non-stationary properties can be decomposed into
a set of piecewise stationary traces consisting of what we define as
“lossy” and “error-free” states. The MTA algorithm defines these
states, and parameterizes transitions between them as a function of
a preset parameter, the change-of-state constant.

Error-free states contain only correctly transmitted frames, while
lossy states exhibit stationarity, and a sequence of lossy states can
be modeled by a traditional DTMC. The MTA algorithm com-
putes the distribution of lengths for both error-free and lossy states,
along with the memory and parameters for the DTMC used on the
sequence of lossy states.

In this section, we first discuss stationarity properties and how
to test a trace for stationarity. We then present the MTA algorithm
and show how it is applied to a trace.

5.1 Stationarity

We consider a network traffic trace to be a random process�%� � � 	 � 
��
with a discrete space � � ��
= %1��

where a
1

denotes a corrupted frame, and a



denotes a correct transmitted
frame. If

� � ��� , then the process is said to have value � at time
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is also called a binary time series [4]. One major challenge in the
analysis of time series is the concept of stationarity. A process
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modeled as a DTMC where the value of the chain at time
	

is de-
termined by the memory of the process [10]. However, checking a
trace for stationarity is mathematically challenging.

We define a trace to be stationary whenever the error statistics
remain relatively constant over time. This definition depends on
the window size we are using to examine the trace. Figure 3 shows
that GSM trace consist of error and error-free bursts, where the
length of error-free bursts are significantly longer than the length



of error bursts. In other words, the traces consist of long error-free
segments interrupted by small error clusters [13]. Note that for
channels with relatively small error clusters, examining traces us-
ing a large window size value not only lowers the perceived chan-
nel error rate, but also distorts the statistics needed by DTMC’s,
resulting in less accurate models. As the window size decreases
towards the length of the average error burst, the channel exhibits
significantly different error characteristics.

We identify trace sections that exhibit stationary properties by
finding error-free bursts of length equal to or greater than the change-
of-state constant � . The value of � is a design decision that we
define as the mean plus one standard deviation of the length of
error bursts of a trace. By removing trace sections consisting of
error-free bursts of length equal to or greater than � , we guaran-
tee that the resulting trace will have stationarity or constant error
statistic properties . We explain the reasoning behind our choice
in more detail in Section 6.1. We next define a lossy state as a
sequence of zeros and ones (always started by a one), where each
run of zeros is not greater than the change-of-state constant � . To
test for stationarity in wireless traces we need to choose a window
size close to the average size of the lossy state.

We use the test for stationarity introduced by Bendat and Pier-
sol called the Runs Test [2], summarized as follows:

1. Define a run as a number of consecutive ones (also referred
to as an error burst).

2. Divide the trace into segments of equal lengths.

3. Compute the lengths of runs in each segment.

4. Count the number of runs of length above and below the
median value for run lengths in the trace.

5. Plot a histogram for the number of runs.

For a stationary trace, the number of runs distribution between
the 0.05 and 0.95 cut-offs will be close to 90 percent [2].

We apply the Runs Test to test GSM trace for stationarity. We
first calculate the mean and standard deviation for the error burst
length. In this case, the mean value was found to be 6 frames and
the standard deviation was 14 frames, yielding a state-of-change
constant value � of 20 ( N�� 1�� ) frames. The average error cluster
size was found to be 26 frames and the standard deviation was 54
frames. We choose the window size for the Runs Test to be 50.

Figure 4 shows that only 17 percent of the runs distribution lie
between the 0.05 and 0.95 cut-offs, and 83 percent lays outside
the left and right cut-offs. Thus, from the Runs Test, we conclude
that GSM trace is a non-stationary process for a window size of
50. In the following sections we use the term stationarity to refer
to stationarity for window size of 50.

5.2 Algorithm

The MTA algorithm views a trace as a process with two types
of states: lossy and error-free. The algorithm divides the trace
into a lossy trace consisting of a concatenation of lossy states (as
defined in Section 5.1),and a error-free trace consisting of a con-
catenation of error-free states (see Figure 2).

We define two random processes with a discrete space � ���
= %1+ O  %$&$&$ � :
� The lossy state length process

��� � ��	 ��
��
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represents the number of elements in the
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(i.e, the length of the state).

� The error-free state length process
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, where� �
represents the length of the

	 CJI
error-free state.

The distributions of
� �

and
� �

are found by plotting the cu-
mulative density function (CDF) and finding the “best” fitting dis-
tributions. We provide an example of how to determine these dis-
tributions in Section 7.1.

The error-free trace is a deterministic process, where all values
are zero. The lossy trace is an stationary random process, therefore
it can be modeled as a DTMC with a certain memory. The MTA
algorithm calculates the memory of the lossy trace, and determines
its transition probabilities.

The application of the MTA algorithm to an input trace can be
summarized as follows:

1. Calculate the mean ( �
E
) and standard deviation ( ��	 E ) val-

ues for error burst lengths in the trace.

2. Set � , the change-of-state constant, equal to ( �
E

+ ��	
E
).

3. Partition the trace into lossy state and error-free state por-
tions using the following definitions:

� Lossy state: runs of 1’s and 0’s, with the first element
being a 1, and with runs of 0’s that have length less
than or equal to the � .

� Error-free state: runs of 0’s that have length greater
than � .

4. Create lossy trace and error-free trace stationary traces from
the lossy and error-free state portions of the trace.

� Lossy trace: concatenate the lossy state portions of the
trace.

� Error-free trace: concatenate the error-free state por-
tions of the trace.

5. Model lossy trace as a DTMC, and calculate its order and
transition probabilities.

6. Determine the best fitting distributions of the length pro-
cesses

� �
and

� �
.

In summary, to take advantage of the Markov Process proper-
ties in non-stationary traces, we have used a novel approach to traf-
fic modeling: a Markov-based Trace Analysis (MTA) algorithm
that divides a trace into subset traces that have stationary proper-
ties.

6 Modeling GSM Wireless Channel

In this section, we demonstrate the process of extracting char-
acteric statistics from a given trace using both the MTA and Gilbert
models [17]. We apply both algorithms to GSM trace to generate
the statistics which we will later use to generate artificial traces
based on each model.

6.1 MTA GSM Channel Model

This section presents an application of the steps of the MTA
algorithm (as described in section 5) to GSM trace.

First, the MTA algorithm analyzes the error-free and error bursti-
ness experienced by GSM trace (see Figure 3), and calculates the
state-of-change constant value � . Section 5.1 calculated � to be
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Figure 3. Burst length in GSM trace.
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20. Since our goal is to isolate and analyze sections that expe-
rience stationarity, we use the MTA algorithm to create two new
traces, called lossy trace and error-free trace, each consisting of
stationary trace sections. The MTA algorithm creates these traces
(as described in Section 5) by first identifying error-free and lossy
states and then concatenating error-free states to form error-free
trace and lossy states to form lossy trace. Figure 5 shows the error-
free bursts and error burstiness experienced by lossy trace. In this
plot, the average error free burst is 3.26 frames, with a maximum
value of 20 frames (recall that the change-of-state constant � was
defined to be 20). The error free burst mean and maximum values
in lossy trace are much smaller than the error burst mean and max-
imum value in GSM trace. Thus, our choice of � guarantees that
lossy trace will experience constant error statistic properties and
therefore stationarity. To prove that lossy trace is an stationary
process we apply the Runs Test. Figure 7 shows that 87 percent of
the runs distribution lie between the 0.05 and 0.95 cut-offs. There-
fore, this result proves that lossy trace is a stationary process and
can thus be modeled as a DTMC.

Next, the MTA algorithm models lossy trace as a DTMC with
memory

8
. To determine the memory

8
of the DTMC, the MTA

algorithm first calculates the conditional entropy values. Table 1
shows the conditional entropy calculated for different

8
values.

Figure 6 illustrates how the complexity of the DTMC measured in
number of states increases exponentially as entropy decreases. For
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Figure 5. Burst length in lossy trace.
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Figure 6. Complexity versus Entropy in lossy
trace.

this trace we chose
8

to be 4 (i.e., 16 number of states), which cor-
responds to only 0.38 percent increase in entropy from the chosen
upper bound of

8 � N . We could have chosen
8

to be larger than
4, but we did not want to significantly increase the complexity of
the Markov model.

Table 2 shows the probabilities of the trace being in each state
and the associated transition probabilities. The transition proba-
bilities were also calculated by frequency counting.

The last step of the MTA algorithm is to determine the best
fitting distribution for the lossy state length process

� �
and error-

free state length process
� �

. Figures 8 and 9 show the CDF for
the processes

� �
and

� �
. Each figure shows two plots, one plot

is the CDF as calculated from the empirical data, (i.e, the distri-
bution of GSM trace), and the other plot corresponds to the CDF
of an exponential distribution with parameter � . We assume that
the distributions of

� �
and

� �
are exponential with parameter � ,

(i.e. the CDF
��� ] ( � 1 U �

,�� Z
, where ] is the error-free or lossy

state length). For each distribution,
� �

and
� �

, the MTA algo-
rithm plots the CDF of the exponential distribution with � ranging
from 0 to 1 in steps of 0.001, and then chooses a value of � that
provides the best approximation to the empirical data’s CDF, (i.e.,
the distribution for GSM trace). We denote

\] as the vector with
the CDF values based on the empirical data, and

\h
as the vector
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Figure 7. The Runs Test applied to lossy trace.

Order
8

Entropy
6 0.5228
5 0.5240
4 0.5248
3 0.5290
2 0.5422
1 0.5585

Table 1. Entropy for the lossy trace.

with the CDF values based on the predicted exponential distribu-
tion. We use the standard error as a measure of the error between
plots, and choose the distribution with smallest standard error. The
equation for the standard error of the predicted

\h
is

� E�������� ��\h  \] ( �
� m 1	 � 	 U O ( o m � �Jh ( U m 	
	 ] h U 	 ] 	 h o �

� � ] ( o
(3)

where � ��� ( � 	
	 � � U � 	 � ( �
, and

	
is the dimension of

the vectors
\h

and
\] .

The predicted distributions for the lossy and error-free state

State � ��������� ������������� �������������
0000 0.1254 0.1699 0.8301
0001 0.0305 0.6414 0.3586
0010 0.0172 0.1832 0.8168
0011 0.0344 0.8009 0.1991
0100 0.0166 0.3073 0.6927
0101 0.0033 0.8129 0.1871
0110 0.0087 0.2683 0.7317
0111 0.0415 0.8889 0.1111
1000 0.0305 0.3022 0.6978
1001 0.0210 0.7037 0.2963
1010 0.0027 0.0547 0.9453
1011 0.0159 0.8820 0.1180
1100 0.0350 0.4556 0.5444
1101 0.0153 0.8623 0.1377
1110 0.0415 0.3118 0.6882
1111 0.5604 0.9341 0.0659

Table 2. Fourth order Markov model statistics.
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Figure 8. Lossy state length distribution.
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Figure 9. Error-free state length distribution.

lengths are exponential distributions with parameters �! � 
-$ 
#"%$
and ��& � 
=$ 
 �

, respectively. The standard error values for the
predicted distributions of

� �
and

� �
are 0.013 and 0.025 respec-

tively. Note that a lower standard error value indicates a more
accurate prediction.

6.2 The Gilbert GSM Model

To study the performance and accuracy of the MTA algorithm,
we compared the MTA model to the traditional Gilbert model. The
Gilbert model is a DTMC of order one (i.e., with two states). In
our traces, the Gilbert model states correspond to the states of the
data frame

��
= %1��
, where a

1
denotes a corrupted frame and a



denotes a correct frame. The Gilbert model predicts the state of
the next frame by just looking at the previous received frame. Fig-
ure 10 shows the Gilbert model state transition diagram. Finally,
Table 3 shows the results of the Gilbert model transition probabil-
ity calculations for GSM trace.

State � �*��� � ( ����� 1 � � ( ����� 
 � � (
0 0.9449 0.0087 0.9913
1 0.0551 0.8509 0.1491

Table 3. Gilbert model statistics.
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Figure 10. Gilbert model state transition dia-
gram.

7 Trace Generation and Evaluation

A key capability of the MTA algorithm is the ability to generate
artificial traces (of any duration) with the same statistical charac-
teristics as traces collected from any given network. In this section,
we demonstrate how to generate an artificial trace given character-
istic statistics from the MTA model. We also generate an artificial
trace based on the Gilbert model, and compare both artificial traces
against the GSM trace. We show that with respect to key charac-
teristics such as error burst length distribution and throughput vs
frame size, the MTA artificial trace provides a much improved ap-
proximation of the original GSM trace.

7.1 MTA Artificial Trace Generation

The algorithm for trace generation from an MTA model is as
follows:

1. Choose the number of frames, � , to generate in the artificial
trace.

2. The algorithm repeats the following steps until all � frames
have been generated:

(a) Determine �
abE �

, the error-free state length from the
error-free state length distribution

� �
.

(b) Determine �
abE �

, the lossy state length from the lossy
state length distribution

� �
.

(c) Generate �
abE �

error-free frames (i.e., a sequence of “0”
of length �

abE �
).

(d) Generate �
abE �

frames that are either lossy or error-free
frames depending on the transition probabilities calcu-
lated for the lossy trace in the MTA model.

Recall that in the MTA model, we observed that the lossy and
error-free state distributions,

� �
and

� �
, fit exponential distri-

butions. Thus, to calculate �
abE �

and �
abE �

we can use the inverse
transformation method from [9]. Given a random variable

�
with

a CDF
��� ] ( , the variable � is uniformly distributed between 0 and

1. We can generate a sample value of
�

by generating � and cal-
culating ] � � ,

�
� � ( . In the exponential case with parameter � ,

� � ��� ] ( � 1 U � , � Z , ] can be determined from ] � U � 	 � � (�� � .
In each case, ] corresponds to either �

abE �
or �

abE �
.

It should be clear by inspection that an artificial trace created by
the above algorithm is guaranteed to have the same characteristics
as those extracted by the MTA algorithm.
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Figure 11. Error burst length distribution.

7.2 Trace Comparison

Here we evaluate the MTA algorithm by comparing the error
statistics of the GSM trace against the two artificial traces. Fig-
ure 11 plots each CDF for the error burst lengths of the three
traces. The mean, standard deviation, and maximum values are
summarized in Table 4. Note that GSM trace and the MTA artifi-
cial trace experience similar burst characteristics with 95 percent
of the error burst lengths being smaller than 22 frames long, while
in the Gilbert trace 95 percent of the error burst lengths are of
size one. These results show that the error burst distribution of the
MTA trace represents a much closer approximation to the collected
trace, GSM trace.

Trace Mean St Deviation Maximum
GSM trace 6 14 126
MTA trace 7.0 8.1 82

Gilbert trace 1.8 0.4 4

Table 4. Error Length Statistics

To demonstrate the importance of an accurate model for setting
system parameters, we cite an example where a naive assumption
about the channel statistics can lead to poor performance. In [11],
we showed how an inaccurate channel model can lead to poor deci-
sion on the optimal RLP frame size of an enhanced multiple radio
block implementation (see Section 1). We repeat this demonstra-
tion using the GSM trace, artificial traces from MTA and Gilbert,
and an artificial trace based on trivial assumptions we call even er-
ror distribution (EED) trace. We artificially generated EED trace
with the same FER as GSM trace, but with an even error distribu-
tion. We then perform retrace analysis on the four traces, yielding
the results shown in Figure 12. Note that the throughput for EED
trace decreases dramatically as frame size increases, yielding an
optimal frame size of only 60 bytes or 2 radio blocks. The Gilbert
trace experiences higher throughput values for small frame sizes,
but throughput decreases rapidly as the frame size increases. Its
optimal frame size is 150 bytes (5 radio blocks). In contrast, the
throughput plots for GSM trace and the MTA trace follow simi-
lar paths. Furthermore, they both yield an optimal frame size of
210 bytes (7 radio blocks). In this particular case, retrace analysis
shows that the improved accuracy of the MTA artificial trace over
the Gilbert artificial trace leads to a more optimal design decision.
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Figure 12. Retrace analysis of four traces.

We used the standard error equation (see Equation 3) to mea-
sure how closely each artificial trace approximates the GSM trace.
The standard error for EED trace was 48, for Gilbert trace was 22,
and for MTA trace was 8. Small standard error values signify that
the traces experience similar error statistics.

In summary, we used the characteristics from the MTA and
Gilbert models to generate artificial traces, and used these traces to
measure how accurately both algorithms model real traces. Both
CDF and retrace analysis show that the artificial trace from the
MTA model more accurately portrays the original GSM trace. Thus,
we conclude that the MTA model provides a more accurate ap-
proximation technique than the traditional Gilbert model.

8 Conclusion

In this paper, we present a novel algorithm for modeling net-
works channels that experience time varying error statistics. The
time varying nature of wirelss and some wired channels has been
a limiting factor in the analysis or modeling using Discrete Time
Markov Chains. However, our Markov-based Trace Analysis algo-
rithm and techniques allow us to separate a non-stationary network
trace into stationary traces and to accurately model the traces using
DTMCs.

We compare the application of the MTA model and the tradi-
tional Gilbert model to traces collected in the GSM wireless digital
cellular networks and show that MTA model synthetic traces have
burst error distributions that are closer to the real distributions of
collected traces than the distribution of traces generated from the
Gilbert model.

We further show that when using retrace analysis to calculate
the throughput for different frame sizes, our MTA model yields the
correct optimal frame size decision, whereas less accurate models
including the Gilbert model and an even error distribution model
yield incorrect and non-optimal frame sizes. The results of the re-
trace analysis gives an example where a less accurate traffic model
leads to the wrong design decision.

We are in the process of applying the MTA model to the prob-
lem of modeling next-generation 2.5 generation and 3rd gener-
ation GSM networks, including the General Packet Radio Ser-
vice (GPRS). Both networks currently have limited prototype de-
ployment, making experimentation difficult. However, by creating
MTA models for each network, we will enable easy, rapid experi-
mentation and prototyping.
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