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Abstract—In a typical wireless system, communications be- and cdma2000) include bursty data, file transfer, audio, and
tween a transmitter—receiver pair is subject to impairments such video streaming. For the success of these systems, it is ex-
as intracell and intercell interference, as well as multipath fading. tremely important to understand how these applications can be

For practical wireless data transmission systems, e.g., UMTS or .
GPRpS, it has been demonstrated by sim{JIation an?j supported properly supported over the standard air interfaces and how

by real measurements that these impairments can be adequately they are affected by the encountered impairments. In a typical
modeled by hidden Markov models (HMMs). It has also been Wireless system, communication between pairs of users is
demonstrated that various types of wireless data arrival process subject to a variety of impairments, the most important being
can be modeled by a batch Markov arrival process (BMAP). intracell and intercell interference and propagation effects due
This paper presents analytical methods for evaluating the packet . multipath. These impairments exhibit memory, in the sense
queue length and packet delay probability distributions assuming thati - t ) db tive bl ’ ks of dat

that packet arrivals are modeled by a BMAP and packets are atimpairments experienced by consecutive blocks ot data are
transmitted over channels with bursts of errors which are modeled Correlated and so are the errors. It has been recently shown that
by HMMs. In contrast with simulations, the analytical approach  being able to capture this feature is very important in order to
allows a system designer to find and test proper diversity, source accurately assess the performance of a wireless data commu-
and channel coding schemes, and communication protocols more nications systems [1]. It is especially important in compressed
efficiently. Analytical and simulation results are compared 10 ice and image transmissions which are extremely sensitive
determine the accuracy of the presented methods.

i to bursty errors [2].
ror'gd;:l;%gff;ﬁﬁ;ﬂlg"?;‘é?x;rﬂ?éﬂgrrlol\‘ﬁfié\?mgg’gisb‘gj&zhg It has been demonstrated theoretically and confirmed experi-
anafysis. ' ‘ ' mentally [3], [4] that hidden Markov models (HMMs) are ca-

pable to model accurately channels with memory, due to the
generality of this class of models. There are several special cases
I. INTRODUCTION of HMMs that are popular in applications: the Elliott—Gilbert

N RECENT years, the emergence of data communicatiofodel with a good state with small error probability and a bad
services in wireless systems has received a lot of attentitat€ With larger error probability [], [6]; the models in which
from the research community. It is envisioned that, even though!Y the transitions between good and bad states are allowed
not a major source of revenue at present, in the near future d&fd €rrors do not occur in good states and occurW|t_h probability
will represent most of the traffic carried by wireless system@n€ in bad states [1], [7], [8]; models based on multiple Markov
eventually surpassing voice. This transition will be fueled by trihains [8], [9]. The popularity of these models is primarily due
fact that popular wireline applications, such as web browsinga, a relative simplicity of fitting these models to experimental

will eventually find their way into the wireless world. More spedata-
cialized applications, such as teleconferencing, may also playCther papers take an HMM for the error process and apply
some role. it to the study of the performance of some protocols [10], [11].
In this context of data communications, classic performantthe majority of papers and books it is assumed that the feed-
metrics which have been traditionally applied to voice syste ck channel is ideal; other papers consider a nonideal feedback

no longer apply and more elaborate ways to define qua"ty_(ﬁhan_nel, but they i_gnore the message arrival discipline [8] or
service (QoS) are being considered. Among the many pararfi@nsider models with two states only [10], [12].

ters used for this purpose are throughput, packet loss, delay, anli! this paper, we extend the analysis of [10] to HMMs with
delay jtter. any number of states. Our analysis provides a closed-form result

Emerging applications which are envisioned in recent &' the probability that a packet's delay (made up of queueing

soon-to-be-developed wireless systems (e.g., GPRS umfelay and retransmission delay) exceeds a certain value, for a
' ' queueing system where the server is up or down according to an
HMM.
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to the various propagation and physical layer parameters suchh as= (e;—1,€1—2,...,e:—). Thus, a sequence with finite

Doppler frequency and signal-to-noise ratio (SNR) is also distemory can be described as an HMM (in this case, a Markov
cussed. The accuracy of the approach is assessed through doleain). However, since real wireless channel memory can be
simulation of the fading process and of the protocol operatiotarge, this description may require a huge state space. Some
reduction of the state space can be achieved by considering

II. CHANNEL MODEL variable length states [9]. An HMM, on the other hand, being
In this section, we examine models for the wireless chann@sMore general model allows us to reduce the state space
with and without the use of diversity. We focus on a singl@ven more. Note, that since encoders, modulators, scramblers,

communication channel whose signals are affected by fadifgfC in @ddition to the physical layer have finite memory, the

interference and noise which leads to bursts of errors. The tifamPined ﬁommuwcanor(] slystem can be desgrlbed'as andl—:cMM
axis is slotted and transmission occurs in blocks\obits. In  (5€€ [8, Ch. 4]). The model parameters can be estimated from

each slot, packets are generated at the transmitter accordifgerimental data [8, Ch. 3] or the results of simulation of a

to some arrival process and queued in a buffer awaiting tra'%_reless channel including Rayleigh and multipath fading and

mission. By properly selecting the parameters of the arriv4ioUus types of interference [9], [13].

process, a variety of data traffic classes can be considered! '® Model just described can be used for error processes at
including web browsing, audio/video streaming, and ftp ue]’f'%”?“s layers. For'example, |t.can track bit-level errors, as in the
This corresponds to important real-world scenarios such as dafginal work by Gilbert [6], or it can track byte-level or packet-
transmission in narrowband systems (e.g., based on time-lal\feI errors as illustrated in [15]. In a.II_(.:ases, the HMM is fu-IIy
vision multiple-access (TDMA) and/or frequency-divisiorfharaaer'zed by the matrix probabilities of correct decoding,
multiple-access (FDMA), as in GSM/GPRS), as well as iincorrect decoding, detected and undetected errors [8J.
code-division multiple-access (CDMA)-based systems (e. In the case of block- or packet-level errors, the matrix proba-

UMTS and cdma2000). Specifically, in TDMA-based system ilities may be expressed in terms of the bit-level matrix proba-
the main impairment is due to random fading quctuation?'"ties' For example, in the absence of coding, the matrix prob-

whose time evolution can be tracked via Markov models [1 bility of correct decoding of a block of lengthhas the form

[14]. On the other hand, in CDMA systems multiple acce (0) - P . The matrix probabiiity of receiving a block V_Vith
interference plays a key role and, also due to the presencéBP'S ISP(1) = (Po + P1)" — Py. In the presence of coding,
complex dynamic mechanisms such as power control, dirdgfSe matrices have a more complex form [8]. In this paper, we
modeling of the channel behavior is not adequate. Howevif!l consideran HMM atthe block (packet) level. We will derive
recent studies based on fitting simulation and experimentﬁfrom the.data O?ta'”ed by simulating the error process arising
data [3], [4] have shown that HMMs successfully capture tHB @ Rayleigh fading channel [17]. It should be clear, however,
essential behavior of the data block error process in these mplat our analysis applies to all cases in which an HMM for the
complex scenarios as well, block error model is available.

Consider a transmission channel which can be described NS Markovian model is easily extended to account for di-
by the error process, i.e., a binary process which identifi¥grsity. In the presence of fading, diversity techniques improve

the correct and erroneous transmissions. We assume thatp(ﬂlgormance by using two (or more) suitably spaced antennas.

error process can be modeled by a stationary HMM whidﬁthe antennas receive independently attenuated replicas of the
is defined by two matrice®., ¢ = 0, 1 whose elements same signal, the probability of failure is reduced. If the subchan-

pij(e) = Pr(e, j|i) are the conditional probabilities of trans_nels are described by HMMs, the combined channel can be also
ferring from channel staté to channel statg and producing described as an HMM. The HMM structure and parameters de-

e = 0 for a correct reception and= 1 for an error. We call the pend on the mthO‘?' of com.blmng. ) .

matricesP, and P, matrix probabilities of a correct reception FOr €xample, if andeal switched diversitis used, where the
and error, respectively. The sequence of states is a Markptem is able to recognize and select (on a packet-by-packet
chain with the state transition probability matrR, + P;. basis) the antenna with the larger SNR, we can assume that a

Since we assume that the process is stationary, the state inR&FKet is received successfully in the combined channel if it is
probability vector can be obtained from the system received over at least one of the subchannel&/ Bubchannels

fade independently, the matrix probability of the transmission
m(Po+P1)=m wl=1 (1) failure can be expressed as a Kronecker product of the corre-

This model is general enough to describe various types $fonding matrix probabilities of the component subchannels [8]

channel impairments in the form of fading and interference M
which causes bursty nature of errors. Common feature of these P(1) = ®Pk(1) (2
impairments is that they have finite memory which means that k=1
there is a finite numbek such that the probability and the matrix probability of successful transmission is
M
Pr (et|6t—l7et—27"'7et—k76t—k—17"') P(O) — ®Pk¢ —P(l) (3)
:Pr(et|et—17et—27~-~7et—k)' h—1

That is the probability of the erroe, depends only on a Space—time coding may be used to achieve maximum diver-
finite number of previous errors. This is a special casgty [18]. In this case, more complex techniques can be used for
of an HMM whose states are defined by the sequencesmputingP(0) and P(1) [8]. We assume in the sequel that
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Receiver | Whereeg = 0,1 andey = 0, 1 represent errors in the direct and
feedback channels, respectively. SymBgk|e;) denotes the
conditional matrix probability of receiving a positive ACK or
a NAK. For exampleP(1|0) denotes the matrix probability of
receiving an NAK when an ACK has been sent.

Errors in the feedback channel can cause a message loss (if
errors in the direct channel have been detected, but the NAK in
Fig. 1. Block diagram of the system. the return channel has been decoded as an ACK) or reception of
the same message more than once(if 0, bute; = 1).

For the channels described by HMMs, propagation delays can
be easily incorporated into computing matrix probabilities. In-
deed, letP be the state transition probability matrix of the un-
derlying bit-level Markov chain. Then the matrix probability
A. Two-Way Channel Model of ¢4 in the system with the propagation delay &fbits can

In two-way systems, information packets are sent over the computed z’:lE’d(ed)PA whereP,(eq) is the corresponding
direct channel and acknowledgments are sent over the feedbpibability for the system without the delay [8]. Notice that in
channel (see Fig. 1). There are many ways to encode the #his case more details of tkgduthor: Please define “ARQ">
knowledgments. They should be encoded in such a way that kirQ scheme must be provided.
probability of their mutual transformation is small. If the feed- In two-way wireless communications, the probabi}ity( D)
back channel is used solely for transmitting the acknowledthat a packet is not transmitted within slots of its arrival is
ments and the minimum Hamming distance decoding is useah important characteristic of the QoS. To compute this proba-
the positive acknowledgment (ACK) and negative acknowledpility, we need to know the matrix probabilitid¥ A) andP(N)
ment (NAK) should be the bitwise complements of each otheif decoding an ACK and NAK, respectively. These matrix prob-
For example, we can choose the all-zero sequence as the A&lilities can be expressed as
and the all-one sequence as the NAK. The feedback channel de-
coder decodes an ACK, if the number of received ones is less P(4) =P(0,0)+ P(1,1) )
than some numbér, otherwise it decodes a NAK. P(N) =P(0,1) + P(1,0). (6)

Usually, the feedback channel is used for transmitting somee assume in the sequel that the matriB$st) and P(N)

other information and the acknowledgments occupy a portiongfe known (obtained analytically, through simulation, or esti-
the feedback packets. In this case, the previous scheme capyaged from experimental data).

applied only to the portion occupied by the acknowledgments.

Alterna'tively, an ACK is encoded by a code combination and IIl. QUEUE LENGTH DISTRIBUTION

a NAK is encoded by a noncode combination (for example, by o ) )
inserting some errors in it). We assume that if the feedback mesPackets arriving at the transmitter enter the transmit buffer
sage cannot be decoded, it is assumed to be a NAK. We ass@ng are transmitted in the first-in—first-out (FIFO) fashion. Mes-
also that the channels are perfectly synchronized. More inf&29€s are removed from the buffer after receiving an ACK. A
mation on encoding the acknowledgments and computing tijpe interval between reception of two consecutive ackno_wl—
corresponding matrix probabilities can be found in [8, Sec. 5.8dgments (ACKs or NAKs) we call a slot. Thus, the slot size

To characterize these systems, we need to consider four §fPends on propagation delays and transmission times in the
ferent outcomeg. as follows. direct and feedback channels.

. . . We assume that packet arrival is modeled by an HMM whose
» ¢ = (0,0): transmission of a message without detecte ! :
. ) states may depend on the channel states. This model is general
errors and decoding an ACK; . - . . -
ecfough to describe large varieties of multimedia traffic: some

» ¢ = (0,1): transmission of a message without detecte :
: , States may correspond to voice some other states may corre-
errors and decoding a NAK;

B ) . ) . sRond to data and so on.
» ¢ =(1,0): detecting errors in a message and decoding ah_. .
ACK- Since we assume that the channel is also modeled by an

v . : . . HMM, the system can be described as an input—output HMM
ZN;K(I’ 1): detecting errors in a message and d(_}COdIng(I{%Z)HMM) [8] with matrix probabilitiesP(X,Y") whereX is

If both channels can be described by an HMM, we need }%e number of arrivals anil € (4, N) is the acknowledgment

know four matrix probabilitie® (£) to describe a two-way com- or the first packet in the queue. We assume that the propagation

munication system. These probabilities can be obtained USlg]elays are included into these probabilities. (Note that the case
the methods described in the previous section m%vhich the arrival and channel HMMs are independent may

For example, if we assume that errors in the direct and fee?ge— considered as a special case of dependent HMMs with

back channels are independent, these matrix probabilities ar X, V) = P(X) ® P(Y).)

. . If we assume that arrivals depend on the channel state and
equal to the Kronecker products of the corresponding matrix . " . . .
probabilities a¢x is the probability thatX arrivals occur in a slot given that

the channel is in staté then
P(ea,ef) = Pa(ea) ® Py (efleq) (4) P(X,Y)=AxP(Y) (7)

ACK/NAK

Message Buffer
Generator

HMM Error Source

the matricesP(0) and P(1) are known (obtained analytically,
through simulation, or estimated from experimental data).
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whereAx = diag{asx} is the diagonal matrix of,x .
Let us calculate the probability distribution of the number
of the packets in the queue waiting for transmission. According
to our model, the number of packets in the queue can bg Qe— C, = Zp(l +ilH)GI (22)
scribed by a Markov chain whose state transition probability ,
matrix has a special form called the structured stochastic matrix
of the M/G/1 type [19]. The blocks of this matrix are defined by If the number of arriving packets is bounded( = 0 for
the transition matrix probabilities which are given by k > M), then®(z) is a rational function and its expansion
into a power series can be obtained using its decomposition into

Bi=> P(i|0)G"""

j=i

P(0]0) =P(1, A) + P(0,9) (8) partial fractions. In a system in which only one packet can arrive
P(0,Q) =P(0,A) + P(0,N) in a slot A = 0 for k£ > 1), itis possible to obtain a matrix-
Q=AUN (9) geometric solution [19]
P(m — 1|m) =P(0, A) (10) T, =zoR i=1,2,... (23)
P(m +ilm)=P(i,N)+ P(i + 1, A)
i=0.1,.... (11) wherezx, can be found from the system

The stationary distribution of this Markov chain can be obtained o = £o[P(0[0) + RP(0[1)], zo(I - R) '1=1 (24)

by solving the following system of equations: andR satisfies the following matrix quadratic equation:

m+1
T = Y xiP(mli) (12) R = P(1|0) + RP(1]1) + R*P(1)2). (25)
1=0

where in each vectat; the subscript refers to the number 01“ is not difficult Ito showéhats(; ~ WEIt_ R).t 101 with th
packets in the queue, whereas the various entries correspontd_f%S ar;eﬁ;rjp e,_conskl) er7a Who—s ate system [10] wi € ma-
different states of the HMM. To solve this system, we denote rix probabilities given by (7) where

=~ _(poo P (0 0
- Ea o mo=(5 ) () e
1=0

the solution matrix generating function. Using previous equ,lslrl this case

tions, we can express this function in the form 0
P § @ =a0Pm), a6 = () @
B(2) = moP(0,A)(z — 1) [Tz — 9 4(2) — z9hx (2)] 7" (14)
wherel is the identity matrix and and (14) takes the form

oo (z — 1)agozoo
3] = — — Ag(2), 28
¥y(z) = 3 PX,Y)2Y. (15) (2) AC) [poo + (po1 — p11) Ao(2), po1] (28)
X_(.) L where
The unknownz, can be obtained from the normalization con-

dition A(z) = (2 = pooAo(2)) (1 — p11A1(2)) —p1opo1 Ao(2) A1(2).
. (29)

lim &(z) == (16) By applying the L’'Hospital’s rule, we obtain from (16)

wherer is the steady-state probability distribution of the under- ~ m (1 — Aj(1)) — w1 A7(1)
lying HMM, which can be found from the following system of ™ = 4 "Tpo0 + (po1 — p11) aio] (Poo + (po1 — p11) ar0, po1)

equations: (30)
where
aP=mn, wl=1 P=4,1)+9y(1). (17)
. . . . P1o Po1
Alternatively, the solution can be found using the following ™= (mo, M) = <P01 0’ Do +p10> (31)
equations [20, p. 142]
is obtained from (17). This coincides with the result of [10].
zoK =z - (18) If packets arrive according to an independent Bernoulli arrival
K =P(0[0) + ZP(0|’i)G (19) model with probability), then
- =t A(z) = (1 =X+ )1 (32)
G= Z P +i[l)G" (20) and®(z) is a rational function. Its denominator has two roots

=0 21 = 1andz, = 1/3 where

(1= A)p11 + Apo1 A
3 = b, b= —— 33
F (I =Xpio+ Apoo 1-A (33)

i—1

B, + Z ZjCH_l_j

i=0

I-c)™ " (1)

r;, =
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so that, we can write The probabilityp,(D) can be obtained by the residue theorem.
(1-0) Alternatively, for the binary arrival process, we can use the
®(z) = 2o + (m — z0) =) (34)  matrix-geometric solution which allows us to write
where, according to (30) pa(D) = o ZRZ'PD(Q <)l (45)
_ _ mTLA B i=0
To= | (L=2X) m =0 (35) The sum in this equation can be evaluated using the m&tfix
Therefore, the queue length is geometrically distributed ~ SPectral decomposition [8, Appendix 6]
—(m—z) (1B, k=1,2,.... 36 m_ NN g [ ™) ymeit
o1 = (1 — ) (1 - A", 2 (36) R _ZZB”<i—1>)‘j 46)
This agrees with the results of [10]. The stationary distribution j=li=1
exists if 3 < 1. where);, j = 1,...,r, are the matrixk eigenvalues and the
The same result can also be obtained using the matrix-gewo;s are the correspondlng multiplicities. Using this representa-
metric approach tion in (45) and recalling (43), we can write
_ ; _ 0 0 r  mj B1]¢<L 1 ( )1

7j=1::=1

where</>§”(z) = 9'p,(2)/07". In particular, if the matrixR
has a simple structuren; = 1, j = 1,2,...,r), this formula
becomes

Let us consider now the probability that a packet is not

transmitteq withinD slots of its gr_rival. In a delay constrained pa(D) =z ZBqubg (A\)1 (48)
system, this will be the probability that a packet exceeds the
maximum tolerable delay. _ o )

Let pa(D) be the probability that a packet is not successfulljfhich after substituting,, = = (I — R) and using (43) and (46)
delivered withinD slots from its arrival. This probability can befakes the form

evaluated as N pa(D) = WZBU [P(N) + P(A)/\j]D 1. (49)

=Y zPp(g<i) (38)
T Let us illustrate the calculations for the Gilbert's model and the
where Bernoulli arrival model. According to (37), matrikR has dif-
ferent eigenvalues: zero apidand, therefore, has a simple struc-

Itis easytoseethaty = #(I-R)and(I-R)"'R(1-3) = R

IV. COMPUTATION OF THE LATENESSPROBABILITY

Pp(g<i)= { E;=0 Pn(g), fori <D (39) ture. Inthis case, we have the following spectral decomposition:
- [P(N)+ P(A)|”, otherwise 0 0
is the matrix probability that there are no more thaoccessful R"=Bp", B=f'R= < % 1) : (50)
transmissions irD slots. The matrix probability’ 5 (g) of ex- Thus *
actly g successes can be obtained using the following recurswe 5
equations: palD) = =BIP(V)+ PO =m0 |14 (5)] o7 60
Py(0) =P(N), Py(1) = P(4) (40) here
Pp(g) =Pp_1(9)P(N) + Pp_1(g — 1)P(A) (41) s 50
whereP(A) =4 ,(1) andP(N) = 45 (1). These probabilities p =Pt opor (52)
have the binomial matrix generating function [8] is the eigenvalue aP( V) + P(A)/3 corresponding to the eigen-
vectorm B. This agrees with the results of [10].
ZPD )29 = [P(N) + P(A)z]". (42)

V. NUMERICAL EXAMPLE
By the summation theorenP 5 (g < i) has the following gen-  In this section, we present some numerical results obtained on

erating function: the basis of a three-state HMM of the packet error process in-
duced by the Rayleigh fading[1]. The packet successes and fail-
ZPD g<i)z' =(1—2)"HP(N)+ P(A)z]". ures are determined based on a threshold model for the instan-

taneous fading envelope. More specifically, #ebe the fading
(43) margin of the channel, i.e., the maximum tolerable attenuation
Thereforep,(D) can be obtained using the well-known identityyhich does not cause a packet to be in error. Packets for which
[21, Sec. 2.3.10] the fading attenuation exceefis are declared in error, whereas
1 1 oy —1 D all others are assumed to be correctly received. The HMM is
pa(D) = 2 j{, e <;> (2=2°) " [P(N)+ P(A)2)7dz1. gpiained by numerical fit of the burst and gap length distribu-
(44) tions. We remark that this is just an example to illustrate the
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application of our analysis. Discussion about appropriate way: 10° ?
to model fading channels is not the focus here. We refer to the \\ analysis
vast literature on the topic for more details [1]—[14]. 10" H e simulation
Consider the cas€ = 20 dB and letfpT = 0.01 be the = \
value of the Doppler frequency normalized to the packet trans% 102 ||
mission rate, which determines the process memory span. Ttz
fading process is approximated by the HMM with the following 2 10° \\
matrix probabilities: = .
Q
0.997079 0 0 g 10° -~
P(A) = 0353477 0 0 (53) &
0.121662 0 0 10° ..
0 0.002708 0.000213 R
P(N)=|0 0646523 0 : (54) 10° . . 2 e %
0 0 0.878 338

Using (17), we obtained

Fig. 2. Probability distribution of the queue size. Fading mafgie= 20 dB,

normalized Doppler frequencf, 7' = 0.01, Bernoulli arrivals with rate\ =

«=(0.990678 0.007590 0.001732). (55) 0.5. Analytical results are for three-state HMM.
For Bernoulli arrivals with probabilithA = 0.5, the solution 10
of (25) is i
apaly3|_s
0.002195 0.002005 0.000 190 10% | ® simulation
R= 0478724 0.478633 0.000091 | . (56)
0.784788 0.001570 0.783218 § N
F 10
Equation (46) takes the form 3
5]
- -4
R™ = Bll)\;n + 312)\1211 + Blg)\gl (57) § 10 - 7
[y
whereA; = 0, \s = 0.480635, A3 = 0.783411 \
107 | 7
0.995589 —0.004170 —0.000241
B =1 —0.995589 0.004170 0.000 241 .
—0.995589  0.004170  0.000241 0, 80
0.004 163 0.004167  —0.000 004
B = 0.994 898 0.995 822 —0.000924 Fig. 3. Complementary distribution of the packet delay. Fading margia
—0.015961 —0.015975 0.000015 20 dB, normalized Doppler frequendgf, 7 = 0.01, Bernoulli arrivals with
0.000248  0.000003  0.000 245 rateA = 0.5. Analytical results are for three-state HMM.
Bi3 = 0.000691 0.000008 0.000683 ) o ) )
Markov chain (HMM). Explicit matrix expressions are found,

1.011550 0.011805

0.999 744

which allow computation of small probabilities, for which
The results obtained using (23), (24), and (49) are compargiher proposed methods may fail due to numerical problems.
with the protocol simulation in Figs. 2 and 3, where very good The presented analysis can be applied to studying the per-
agreement can be observed. Fig. 2 shows the results for fbgnance of applications such as audio/video streaming, ftp or
queue size distribution, whereas Fig. 3 shows the results for theb browsing in any environment where communications im-
lateness probability. Note that the same results could be obtaipegtments can be modeled via HMMSs, including real-world sce-
by using a recursive approach similar to the one in [10]. Howtarios such as GPRS, UMTS, and cdma2000.
ever, that approach is inherently limited by numerical errors as
probabilities become small, whereas on the other hand our ap-
proach here does not suffer from this limitation.
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