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Abstract— In this paper we consider a Differentiated
Service Domain, in which the domain administrator has to
decide if to accept or to reject Service Level Agreements
(SLAs) requested by users. After introducing the admission
criteria which is used to verify if there are enough resources
to satisfy the SLA request, we focus our attention to the
problem of the SLA routing, i.e., the selection of paths
along which traffic may flow. In particular, we show that
the construction of an optimal set of paths is equivalent
to the construction of a multicast tree, or a Steiner Tree,
which is know to be an NP-hard problem. We therefore
propose a class of simple heuristics, whose performance are
assessed by simulations. Results shows that it is possible
to increase up to 40% the amount of capacity a network
provider can reserve to SLA requests without violating the
QoS constraints or to reduce the SLA blocking probability
by a order of magnitude by using the proposed algorithms.

Index Terms— DiffServ, Admission Control, Routing,
QoS

I. INTRODUCTION

Traffic patterns on today’s Internet have become more
and more unpredictable, shifting from the ubiquitous
client-server paradigm of the early days of the World
Wide Web, to the peer-to-peer frenzy of the past few
years. As if predicting user traffic were not sufficiently
demanding, the introduction of a wide range of mobile
services over the Internet is bound to give service
providers quite a few headaches too. For these rea-
sons, adequate tools to support the provision of Quality
of Service (QoS) guarantees to end users are sorely
needed. Among them, the Diffserv [1] architecture is
frequently touted as the cure-for-all solution. DiffServ
requires packet classification at the network ingress, and
provides a differentiation of the treatment according to a
(small) set of classes, named Per-Hop Behaviors (PHBS).
The various PHBs define a rich toolbox for differential
packet handling by individual IP routers. In the DiffServ
framework, a service contract, or Service Level Agree-
ment (SLA), is established between a customer and a
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service provider, to specify the forwarding service that a
customer should receive. The service contract, though,
does not discriminate among packet destinations, (or
sources if they are being received by the customer). For
this reason, it is of paramount importance that a service
provider be capable of predicting, as it were, which parts
of its core network are likely to become overloaded as
a new SLA signs in, and take appropriate measures. A
form of preemptive measure is to route a new SLA over
a set of paths that, at the same time, satisfy the user’s
QoS requirements while making sure that the bandwidth
is evenly utilized across the whole domain. This paper
addresses the issue of where to route traffic from new
SLAs, once they are admitted into a provider’s network.

Before tackling the problem of SLA routing, it seems
useful to recall the cornerstones of the DiffServ architec-
ture. Common DiffServ PHBs are Expedited Forwarding
(EF) [2], Assured Forwarding (AF) [3], and classic Best
Effort (BE). The purpose of the EF PHB is to carry
traffic from endpoints as if it traveled over a point-
to-point connection, or a “virtual leased line”; on it,
deterministic QoS guarantees are offered. Provisioning
the network for EF traffic is often accomplished by
giving it strict priority over traffic marked by other code
points. The AF PHB instead offers a soft QoS guarantee:
within each AF class, IP packets are marked with one
of three possible drop precedence values. In case of
congestion within a node, it tries to protect packets
with better service profile by preferably discarding those
with a higher drop precedence value. Traffic offered by
the user is metered at its ingress node according to
the user’s traffic profile, and packets are marked with
the contracted drop precedence value if the data rate is
below the contracted rate; otherwise, they are marked
with a higher drop precedence value. The AF PHB can
be used in a point-to-point setting, as well as in point-
to-multipoint configurations, where traffic can flow to
different destinations (or come from different sources)
at the same time.

The DiffServ QoS paradigm is now supported in
a number of IP routers of different make; still, not



many network operators are yet exploiting DiffServ to
offer QoS guarantees to their customers, in spite of the
potential increases in revenues. This fact is due in part to
the difficulty in setting the parameters of the algorithms
used for the differentiation of the treatment offered to the
different traffic classes, but even more to the difficulty
in determining how to implement an SLA Admission
Control (SLA-AC) algorithm so as to protect the network
from overloads, thus allowing the network to meet the
QoS guarantees specified in the SLA contract.

We have proposed and discussed a possible SLA-
AC algorithm in [4], where an analytical model was
developed to characterize the admissibility of a set of
SLAs. Using a statistical approach, it approximately
predicts whether the admission of a set of SLAs allows
the fulfillment of their QoS requirements. We now build
on the previous work by proposing a heuristic algorithm
that tries to increase the effectiveness of the admission
algorithm through a careful selection of routes from
sets of sources to sets of destinations. Those SLAs that
were accepted, and for which a route was selected, are
“pinned” to the links of the route. Commonly, this is
achieved using MPLS [5] inside the core network.

Il. ADMISSION CONTROL FOR SLAS IN DIFFSERV
NETWORKS

The problem of admitting SLAs in not unlike stan-
dard CAC problems [6], where the following inputs are
usually required:

« the (logical) topology of a single DiffServ Domain,
comprising M nodes and L links; each link [ is
supposed to reserve capacity C; to the AF class
of service. Each node m can be classified as either
ingress/egress node if users (i.e., non-specific traffic
generators) are connected to that particular node, or
core node, if it is a pure transit node, i.e., no traffic
is either generated or directed to that node;

« the set of users that request service from the net-
work; each user is attached to an ingress/egress
node, and can request more than one service from
the network, i.e., multiple SLAs can refer to the
same User;

« a definition of the SLAs of interest; in particular,
we consider two possible types of SLA: the first
refers to traffic generated by a single user and
directed to (possibly) multiple destinations, while
the second considers traffic going from (possibly)
multiple sources to a single user.

Each SLA is described in terms of assured bandwidth
going to (coming from) a set of possible destinations
(sources) within the same DiffServ Domain, or, possi-
bly, egress (ingress) nodes connected to other domains.
The SLAs define statistical bandwidth guarantees on

traffic, i.e., traffic transmitted (received) by the source
(destination) subscribing to the SLA,; therefore, each
SLA is characterized by a probability indicating that
soft guarantees are used. In addition, a probabilistic
description of the traffic associated with every SLA is
needed, in terms of fraction of overall traffic going from
a user to the set of its destinations, or coming from the
set of possible sources to the user.

For the sake of clarity, in the rest of the paper we
assume that the SLA will refer to traffic generated from
a source node and directed to multiple destinations. In-
deed, the extension to the generic case is straightforward.

Given this probabilistic description of the traffic an
SLA offers to the network, in [4] we defined a method-
ology to decide the acceptance or rejection of a new SLA
request. The proposed criterion is based on the derivation
of the statistical description of the overbooking proba-
bility! for a new SLA, given the SLAs already admitted.

In this paper we focus our attention to the route
selection problem, i.e., the identification of the set of
links to be used to route traffic from the source toward
the destination nodes.

I11. PROBLEM STATEMENT: ROUTING OF SLAS

The problem of finding the set of paths that will be
used to transport traffic from a newly requested SLA is
formalized using a graph theory approach. The topology
of the DiffServ domain is modeled by a Directed Graph
D = {V, A} in which V is the set of vertexes (|]V| = M)
and A is the set of directed arcs (|.4] = 2L). A vertex
represents a node in the topology, while two directed
arcs (¢,7), (j,4) € A between nodes 7,j € V represent
a link. Each arc is weighted by two costs, (uij,04;),
which represent the average and standard deviation of
the traffic which is flowing on arc (¢, j).

We assume that an SLA; is described by

« the source (ingress) node s, to which the user
requesting the SLA is obtained;

« the bandwidth requested By, to be guaranteed with
probability II;

« the probability rs4 with which the traffic is directed
to a user attached to destination (egress) node d;
zdev Tsd = 1.

The set of nodes Dy, = {d € V|rsq # 0,d # s} C V
includes all destination nodes of SLA;. The cardinality
of D, will be indicated by D,. Then, given a set of
already accepted and routed SLAs, it is possible to derive
for each arc the cost (y5,04;).

The routing optimization problem can then be formal-

ized as finding the set of arcs T'; which will be used to

1Probability that the traffi ¢ crossing any link of a source-destination
path exceeds the link capacity.



Fig. 1. Two possible trees from source node s to destinations nodes d
and dy which are obtained by considering P;_,; = (s,2),(2,d1),

and Pi_,; = (s,3),(3,d2),(d2,d1).

route a new SLA request, so that the maximum average
overbooking probability experienced by all { SLA;} over
such set of arcs, indicated as p;(Ts), is minimized, i.e.,
min(max; p;(T;)). If ps(Ts) < I, then the new SLA
request will be accepted, otherwise it will be blocked.

The methodology to evaluate the overbooking proba-
bility is detailed in [4] and not reported here for lack of
space.

This problem is equivalent to the well-known Steiner
Tree problem [7], which can be summarized as the prob-
lem of finding the minimum cost tree T'; that connects a
source node s to a subset of vertexes in digraph D. As
cost function, the overbooking probability is considered,
which unfortunately is a non-linear function of (15, 05),
transforming the formulation in a non-linear problem.
Moreover, also in its original formulation, the Steiner
Tree problem is known to be NP-complete, and therefore
can only be solved using heuristics.

A. Proposed heuristic

The limited amount of time that can be devoted
to solve the problem, i.e., to reply to a user’s SLA
request, imposes to solve the Steiner Tree problem using
heuristics with limited complexity. We therefore propose
a simple heuristic, whose complexity is very limited
and depends on two tunable parameters. In particular,
the construction of the Steiner tree is obtained as union
of pre-computed paths, each one connecting the source
node s to a particular destination d. An iterative algo-
rithm is then used to compute several trees, and select
among them the one which minimizes the maximum
overbooking probability p;(T3), Vi.

Let {P!,,, @ = 1,2,...,K} be an ordered set of
K precomputed paths joining a source node s to a
destination node d. Paths in the set are ordered according
to a common metric, e.g., the number of hops, so that
path 1 is the shortest path. Let T;(n) be the solution to
the Steiner tree problem obtained at iteration n. For each
destination d, a single path, identified as opt, is selected,

1. T5(0)=0,n=0

2. // Build the initial solution

3. forall (de D)

4,

5. Ts(n) = Ts(n) |_J{(l;m) € P}, 4}

6. opt[d] =1

7.

8. Ty =Ts(0)

9. // lterate to build other solutions
10. for (n=1; n<Z; n++)

1. {

12. forall (de€ Dg)

13. {

14. for (i=1; i<K; i++)

15.

16. Ts(n) =0

17. Ts(n) = Ts(n) U{(l,m) € P; 4}
18. forall (j€Ds\{d})

19. Ta(n) = Ts(n) | J{(I,m) € P;gt]bl}
20. if (msax(ps (Ts(n))) < msax(ps (T;))) then
21. TS =Ts(n);optld] =1

22. }

23.

24. }

25 return Ty

Fig. 2. The Heuristic Algorithm

and Ts(n) is then obtained as the union of all the arcs
of Ps"ffd. Therefore different solutions are obtained by
selecting different sets of paths.

The algorithm we propose tries to efficiently explore
the state space of A possible set of paths, whose number
grows as a combinatorial function of K. Instead of
considering all possible combinations of paths, at each
iteration, K - D, different solutions are tested, each one
obtained by simply changing one path at a time, i.e., for a
given destination d, test all trees obtained by considering
all K paths Pi_ ;. This defines K - D, “neighbors”, i.e.,
solutions that differ from the previous one by a single
path. At the end of the iteration, the best neighbor is
selected. A maximum number of iterations Z is defined
to limit the complexity of the algorithm.

Figure 1 shows two possible trees (arcs included in the
tree are thicker), obtained considering the source node s,
and two destination nodes dy , d». Two different paths to
d, are considered, P}_,; = (s,2),(2,d1),and P}_;, =
(s,3),(3,d2), (d2,dy), yielding two different trees.

Figure 2 reports a formal description of the algorithm.
Lines 1 — 7 build the initial solution as the union of all
the first-selected paths for all destinations. Lines 10 — 24
then iterate Z times the construction of possible better
solutions, by building for each destination (line 12) all
possible trees considering all K paths from ¢ to d (lines
14 — 22). opt[d] is used to store the best path found so
far toward destination d.



Considering as basic operation the evaluation of
the minimum-maximum overbooking probability for all
SLA request, the algorithm complexity is O(ZMK),
as at most Z iterations are possible, each of which
requires to consider for all destinations D, = O(M)
at most K paths. The computation of K paths is done
offline and therefore its complexity does not affect the
time required to reply to an SLA request. It can be
obtained using variations of the Dijkstra’s algorithm with
computational complexity O(K Llog M). In particular,
in our implementation of the algorithm, the set of paths
{Pi_,} is chosen as the set of K shortest paths from
source node s to destination node d.

IV. PERFORMANCE RESULTS
A. Simulation scenarios

We consider a single DiffServ domain, comprising
M = 32 nodes and L = 144 links, arranged in a
randomly generated topology?. Each link has the same
capacity, which is completely devoted to the AF service.
32 users are present, one for each node, all capable of
both generating and receiving traffic, so that all nodes
are ingress/egress nodes. Each user requests 3 different
SLAs, for a grand total of 96 SLAs. To simplify the
scenario, we suppose that all SLAs are of the same
type. In particular, we consider a scenario where users
are traffic sources, and traffic is routed uniformly to D,
destinations, i.e., for each SLA, D, destination nodes
are selected at random for which r, 4 = 1/D,, while
the remaining M — Dy — 1 nodes are not part of
the agreement. We present results for Dy = 31,16,8
possible destinations for each SLA source node.

B. Total Assured bandwidth

As first performance metric, we are interested in the
Total Assured Bandwidth, AB;.:, i.e., the maximum
bandwidth the network operator can sell to users without
incurring in SLA violation. Given an initial SLA set,
we seek a set of committed bandwidths {B;} for which
the overbooking probability requests are met, but no
B, can be increased without violating at least one QoS
constraint. We call this a border configuration, which
indicates that the AF network capacity is completely
exploited, and no already present SLA can ask for larger
bandwidth without violating the guarantees of at least
one SLA. The tool we implemented and used in [4]
finds border solutions, trying to increase all By up to
a value in which it is not possible to further increase
any of them. Different “increase” algorithms can be

2Different random topologies were generated using GT-ITM [8]
and were tested, without observing major differences from the one
presented in this paper.

TABLE |
PERCENTAGE OF TOTAL ASSURED BANDWIDTH CONSIDERING
D4=31,16,8 DESTINATIONS (TOP,MEDIUM, BOTTOM PLOT
RESPECTIVELY) FOR EACH SLA REQUEST.

B K
D=8\ 1 | 2 | 3 | a4
0 313 | - : :
1| - | 1397 | 1416 | 1419
Z 5| - | 1456 | 1487 | 1490
3| - | 1517 | 1539 | 15.41
- i
D718 1 | 2 | 3 | 4
REAZSERE - -
1 - | 1489 | 1495 | 1523
Z 51 - | 1578 | 1611 | 1629
3| - | 1641 | 1688 | 17.10
%8
D=8 1 | 2 | 3 | 4
0 24t | - - -
, LIl - | s | 14| 151
2 1533 | 15.80 | 15.98
3 1541 | 1595 | 16.10

applied, so that more than one border point can be found
from a starting SLA set. To gauge the impact of the
path selection algorithm, each time the tool attempts a
bandwidth increase of By, a new tree T5 is also generated
according to the proposed heuristic. Therefore, more
complex tree selection algorithms allow to better exploit
network capacity.

1) Impact of path set size and number of iterations:
To evaluate the impact of the two tunable parameters
K and Z which limit the complexity of the heuristic,
we report the percentage of the ABy,; versus the total
network capacity. Table I reports different border points
versus different combinations of the Z and K parame-
ters. Three different scenarios are considered, in which
D, = 31,16,8. The cases Z = 0 (or K = 1) are
all equivalent, because in that cases the algorithm will
immediately exit after the initial solution to the Steiner
Tree problem is obtained (either no iteration are allowed,
or no alternative paths can be considered to build other
trees). Therefore, they can be considered as baseline
configurations.

Considering the impact of the number of paths K, a
limited increase in the percentage of AB,,; is observed,
while the impact of the number of iterations, Z, has
a larger impact. For example, considering D, = 31,
the increase of AB;,; goes from 13.13% up to 15.41%
when Z = 3, K = 4, corresponding to an increase
of 17%. This is largely due to the increased number
of iterations Z rather than to the increased number of
paths K. This can be explained by considering that
for each increase of Z by a unit, the optimization
algorithm explores a different possible solution obtained
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Fig. 3. Total Assured Bandwidth versus Z, considering K = 2 and
Dg = 31,186,8.

by changing one path to a different destination. On the
contrary, increasing the number K of paths generates
solutions in which a larger number of paths are tested
from each destination, but those paths have lower-quality
metrics, (they are longer, in our case) and therefore
“consume” more resources when used to route traffic.
This holds true for all scenarios, where the gains in
the ABy, increase up to 34% (Ds; = 16) and to 28%
(Ds = 8). The increased gains are due to a higher degree
of variability of scenarios, allowing the optimization
algorithm to obtain larger gains.

2) Maximum Number of Iterations Z: The previous
results suggest that having just K = 2 paths for each
pair of source/destination nodes guarantees an increase
in Total Assured Bandwidth. It is however interesting to
study how large Z can grow before these gains become
negligible. Figure 3 gives the answer to the previous
question, by reporting the AB;,; percentage versus Z
for the three previously considered scenarios. As can be
observed, all the curves in the plot show an asymptote:
for Z — oo the ABy, is upper-bounded. In particular,
for the D, = 31 scenario, Z > 8 offers no negligible
increase in the Total Assured bandwidth that can be
successfully allocated to the AF traffic. For D, = 16,
Z = 6 is sufficient to reach the maximum gain, while for
D, = 8, after Z = 2 iterations there is but a negligible
gain.

C. Dynamic Scenario - Blocking Probability

While the Total Assured Bandwidth is a performance
index that is related to the maximum traffic a network
can transport under QoS constraints, another important
performance index is the Blocking Probability expe-
rienced by users when requesting a service. Smarter
allocation algorithms allow network operators to accept a
larger number of request, and to increase the revenues. In
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Fig. 4. Blocking Probability of SLA considering K = 2 and D, = 31
for different values of Z.

this subsection, we explore how the proposed algorithm
affects the SLA admission control in term of blocking
probability. A dynamic scenario is considered, in which
users request SLA to the network operator for a limited
amount of time. A request is accepted in the network
according to the admission policy, otherwise it is refused.
SLAs arrive following a Poisson process of parameter A,
and the SLA holding time is exponentially distributed
with average duration normalized to 1. Each SLA re-
quests an assured bandwidth B, = 1Mbit/s toward
D, = 31 egress nodes. The same network topology
considered in the previous section is considered.

Figure 4 plots the blocking probability versus the
offered load to the network, which is defined as p =
B = ). The plot shows that a noticeable reduction of the
blockmg probability is already obtained for Z = 2, and a
further decrease is achieved for Z = 5, while considering
Z = 10 iterations yields little additional decrease.

This confirms the intuition that it is possible to bet-
ter allocate network resources with limited complexity
without violating the QoS constraints.

D. Computational Complexity

To gauge the computational complexity of the pro-
posed framework, Figure 5 plots the number of seconds
required to accept a new SLA requests versus Z and
for different values of K. It reports the CPU time
used on a 2.4GHz Pentium-IV Linux PC. The time has
been averaged over 1000 experiments, each consisting
of an SLA request from a random source node s to
all destinations (d = 31, the worst case). As expected,
the CPU time increases linearly with both Z and K,
and ranges from about 1s up to 9s, therefore remaining
limited and compatible with the reply time of an SLA
request.
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V. CONCLUSIONS

The paper proposed a low-complexity, heuristic al-
gorithm to improve the resource selection that allow a
service provider to increase the amount of bandwidth it
can sell to its users without violating traffic guarantees.
Results have shown that, although the solution is non-
optimal, it yields remarkable gains after a few iterations.
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