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Abstract— In this work we consider the problem of routing
bandwidth-guaranteed flows with time-variable bandwidth pro-
files on a MPLS network. We assume that each demand is routed
in an explicitly routed LSP, and the amount of bandwidth that
must be reserved along the LSP varies during the day according
to a piece-wise mask which is known in advance. The time-of-
day bandwidth profiles can be explicitly declared by the VPN
customers in the SLA, or alternatively predicted by the ISP based
on past measurements.
In this framework, we propose a simple on-line algorithm
for optimal selection of LSP paths. We also provide a ILP
formulation for the associated off-line problem, and adopt it as
a reference performance bound for the on-line algorithm.
Additionally, we compare the performances offixed and variable
routing in presence of time-variable bandwidth profiles. The
results presented here suggest that thea priori knowledge of
the per-demand traffic profiles can be exploited to achieve a
fixed routing configuration which can be marginally improved by
variable reconfigurations. We relates our findings with a couple
of previous works that in different application contexts achieved
similar results.
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I. I NTRODUCTION

In this work we consider the problem of routing bandwidth-
guaranteed flows with time-variable bandwidth profiles on a
MPLS network. We assume that each flow (demand) is routed
in a dedicated Label Switched Path (LSP), and that the amount
of bandwidth that must be reserved for a LSP varies during
the day according to a piece-wise mask which is known in
advance, denoted asbandwidth profile. The per-demand time-
of-day bandwidth profiles can be explicitly declared by the
customers and included in the Service Level Agreement (SLA)
with the ISP. This would allow the delivering of a more flexible
services, namely the “time-varying Virtual Private Networks”
(tv-VPN), aimed at better matching the customer requirements
in terms of bandwidth reservation timing. With this approach,
the customer requirement might resemble something like:

“ I want a pipe from siteS to siteD with assured10
Mbps from 8.00 AM to 6.00 PM, with5 Mbps from
6.00 AM to 10.00 PM and only 1 Mbps from 10.00
PM to 8.00 AM”.

On the customer side, the difficulty in estimating her/his
bandwidth needs in the form of a time-of-day vector is
not far from that associated to the estimate of a single

1This work was supported by the Italian Ministry for University and
Scientific Research through the TANGO Project (PNR 2001-2003, FIRB).

bandwidth value, as is done in current SLAs. On the operator
side, the possibility to distinguish the customer bandwidth
provisioning on a per-hour basis opens the way to the
introduction of differentiated billing models (e.g., night-time
connectivity cheaper). Such models have been extensively
used in traditional circuit switched telephone networks, and
demonstrated helpful to the operator to modulate the customer
behavior in order to optimize and distribute (in time) the
usage of the network infrastructure.
Alternatively, for non-VPN flows (e.g., POP-to-POP public
traffic) the time-of-day traffic profile might be derived from
past measurements. In fact, it has been established that data
traffic presents high periodicity at the time-of-day scale (see
for instance [1] and reference therein, and [2]). Therefore,
it should be possible to predict the time-of-day behavior of
traffic demands based on past measurements.
In all such cases (tv-VPN and predicted traffic) the network
has to route new LSPs taking into account their time-of-day
bandwidth profiles, which is known in advance. With respect
to such routing problem, we distinguish theon-line and
the off-line problem instances. In the former, demands are
allocated as they arrive, and there is no rearrangement of
previously allocated paths. In the latter, the entire set of
demands is known in advance and all the routes are computed
jointly in a global optimization process. We also distinguish
betweenfixed and variable routing, depending on whether
or not the route of each demand can be varied during the
time-of-day. Our interest is admittedly for fixed routing, and
we will consider instances of the variable routing problem in
order to derive reference performance bounds. Incidentally,
we found that the optimal solution to the fixed routing
problem with complete knowledge of bandwidth profiles
holds about the same resources usage than the optimal
variable routing.

In this work we propose a simple on-line algorithm for rout-
ing fixed LSPs with declared time-of-day bandwidth profiles.
Our algorithm relies on a simple shortest-path computation,
where the link weights are a function of the residualpeak
bandwidth. This approach basically extends what proposed
in [3] for fixed bandwidth demands. We also provide Integer
Linear Programming (ILP) formulations for the associated off-
line problems, in case of fixed and variable routing, and solve
them to obtain reference performance bound for the on-line
algorithm.



The rationale behind this work is that thea priori knowledge
of the per-demand time-of-day bandwidth profiles can be
exploited to minimize the overall bandwidth reservation. In
fact, by coupling demands with increasing and decreasing
profiles on a same link, it is possible to achieve a certain
degree of bandwidth saving. More formally, by denoting
with fk(τ) the amount of bandwidth required by demand
k at time τ on a generic link, a total amount of bandwidth
equal tomaxτ

∑
k fk(τ) is sufficient to support the bundle

of demands. On the other hand, in absence of the exact
knowledge of the full bandwidth profile but its peak, the
reserved bandwidth would be

∑
k maxτ fk(τ).

The potential saving:

S =
∑

k

max
τ

fk(τ)−max
τ

∑

k

fk(τ) (1)

depends on several factors. First, as it comes from the mutual
compensation of increasing and decreasing bandwidth profiles,
the saving is virtually null in case all demands have parallel
behavior, i.e. they all rise and fall in a synchronized fashion.
In case of tv-VPN profile synchronization can be counteracted
by means of differentiated billing profiles. Secondly, the
potential bandwidth saving depends on the routing algorithm
and its ability to fit demands with mutually-compensative
profiles on the same links. Our on-line routing algorithm is
specifically targeted to achieve this goal.

In our model the per-demand bandwidth profiles are
piece-wise constant, holding a certain bandwidth value for a
certain time interval. It can be expected that some degree of
discretizationin time would be beneficial for a better fitting of
compensative demands on the same links, and consequently
to increase the potential bandwidth saving. Discretization in
time means that the network operator will define a common
set of time-of-day intervals (or “time slots”) for all demands.
During the τ -th slot, the generic demandk is associated to
a single bandwidth value, sayfk(τ). In other words, the
discretization in time enforces the synchronization of changes
in bandwidth reservations at the time slot boundaries.

The rest of the paper is organized as follows. In section
II we relate this work with the existing literature. In section
III we describe our on-line algorithm for fixed routing, while
in section IV we provide Integer Linear Programming (ILP)
formulations of the off-line problem instances, both for fixed
and variable routing. In section V we provide several numer-
ical results assessing the goodness of the on-line algorithm,
included a comparison with reference bounds as provided by
the solution of the of-line optimization instances. In section VI
we relate our results on fixed and variable routing with those
found in two previous works, namely [4] and [5]. Finally, in
section VII we conclude and suggest new directions for further
research.

II. RELATION TO PREVIOUS WORK

The literature on routing in connection-oriented packet
networks, basically ATM and MPLS, is extremely vast. The

problem of on-line routing of guaranteed-bandwidth virtual
circuits has been faced in a large number of previous works,
for instance [3] [6] [7] [8] to cite only few samples. Quite
surprisingly, none of them ever considered the case of traffic
demands with time-varying bandwidth profile.
To the best of our knowledge, the problem of optimal network
configuration in presence of known time-varying traffic only
appeared in [4] and in [5]. Both works where in the perspective
of off-line configuration, i.e. global optimization, while in this
paper we are mainly interested in the on-line problem. The
application contexts were also very different from the one
considered here: a connection-less network with OSPF/IS-IS
routing in [4], and a connection-oriented multi-layer network
in [5]. Despite the considerable differences in the approach
and in the application scenario, we believe there is a com-
mon fundamental relationship between our findings and the
experimental results reported in that previous works. Section
VI in this paper is devoted to enlighten such commonalities
and suggest a broader direction for further research.

Under the algorithmic perspective the present work has a
certain relationship with [3]. In fact, it was the first one to
suggest the shortest-path routing with link-weights dependent
on the residual-bandwidth (let us denote this approach as
Residual Influenced Shortest-Path, RISP). Basically, the on-
line heuristic proposed in section III is an extension of the
RISP approach, where the residual bandwidth becomes a
vector inτ but the link-weight remains a scalar.
One might wonder why we preferred RISP to alternative
approaches, for example MIRA [7] and its derivations [8].
We believe that the main attractiveness of the RISP scheme
is in its extreme simplicity, so that it can be easily extended
to be applied to more articulated problems. For instance, in
a previous work [9] [10] we adopted a RISP-like scheme
for the on-line routing ofprotected demandsagainst single
and dual faults. As a further step, we are currently working
to incorporate the time-varying extensions of RISP into that
scheme, so as to achieve a global model for the on-line
allocation of protected demands with time-variable bandwidth
profiles. At the same time, we believe that the extension of a
MIRA-like model to the case of time-varying traffic demands
is an interesting topic for future research.

III. PROPOSED ON-LINE ALGORITHM

We consider the 24 hours day-time partitioned into a total of
Θ time slots, not necessarily of equal duration. The indexτ =
1, 2...Θ will denote the generic time slot, while the indicesk
andm will refer to demands and links respectively. We assume
that connection requests (i.e.,demands) arrive randomly to the
network. The generick-th demand is associated to a ingress-
egress node pair (sk, dk) and to a bandwidth-profile vector
denoted by

{
fk(τ) , τ = 1, 2...Θ

}
, being fk(τ) the amount

of bandwidth required by thek-th demand during the time slot
τ . Let us introduce the notation that will be used throughout
the rest of the paper:

• rk
m is the fraction of traffic from thek-th demand that is

routed over linkm (0 ≤ rk
m ≤ 1).



• um(τ) is the amount of bandwidth reserved on linkm
during the time slotτ .

• vm = maxτ=1..Θ {um(τ)} is the peak link bandwidth
on link m, i.e. the maximum amount of bandwidth
reserved across the entire day-time. Unless differently
specified, we will assume that the peak bandwidth is
the relevant metric accounting for link resource usage,
so that occasionallyvm will be simply referred to aslink
bandwidth.

• Cm is the capacity of linkm.
• wm is the link-weight associated to linkm. Its value is

dynamically computed for each new request according to
the profiles of reserved and requested bandwidth.

The generick-th request arrives at the Route Selection
Engine (RSE), which computes the most convenient route
between the ingress-egress pair (sk, dk). We assume that the
new demand will be routed without rearranging the already
established ones. The RSE can be either duplicated in each
edge-node, like in the distributed MPLS-TE architecture, or
centralized in a single route server. In both cases, we as-
sume that a database is available to the RSE, collecting the
topology information as well as the full profile of reserved
bandwidth{um(τ) , τ = 1, 2...Θ} for each network link. In
case of distributed implementation, the link bandwidth profiles
can be disseminated by appropriate extensions to existing
flooding protocols (e.g., OSPF-TE [11]). It is not in the
scope of this paper to compare the centralized vs. distributed
implementation of on-line routing, and the interested reader
is referred for instance to [12] and [10] for more material on
this issue. For each new request, the RSE prunes from the
network topology graph those links without enough available
bandwidth to accommodate the request, i.e. those for which
fk(τ)+um(τ) ≥ Cm for someτ . In a second step, it assigns
a link costwm to each linkm as a non-decreasing function
of:

xm = max
τ=1,2...Θ

{
fk(τ) + um(τ)

}
(2)

for example:

wm =
Cm

Cm − xm
+ ε (3)

Note 2 that wm < ∞ because of the previous pruning.
We tried several alternative weight functions (see table I).
The numerical results showed that in the considered sample
scenarios the function (3) holds the better performances. Based
on the link weightwm, the RSE produces a weighted directed
graph, and on that it runs Dijkstra to find the minimum cost
path between the assigned ingress-egress pair for the new
demand.

2The random termε << 1 has a marginal role, namely to scramble the
route selection for parallel demands (i.e., with same ingress-egress pair) in
case of a poorly loaded network. In fact, in this case a large number of
network links have null reserved bandwidth, resulting in a quasi-uniform link-
weight assignment. If multiple paths of equal hop-length exist between a given
ingress-egress pair, the addition of a small randomization in the link-weight
prevents from preferential selection of the same path for parallel demands.

This scheme is basically an extension of RISP, and it is
well suited to incorporate some additional features that are
of great importance in real networks. For instance it is easy
to incorporate multiple-destination demands, as found for
example in the routing of inter-AS flows, where usually more
than one Border Routers are candidate egress points for the
same flow. This case can be handled with very simple graph
transformations. Additionally, if a pair of disjoint paths have
to be allocated for some demand in order to apply end-to-end
path protection, the Dijkstra algorithm can be replaced by the
Suurballe algorithm that returns the shortest-pair of disjoint
paths (see [9] [10]). Such possibilities enrich the attractiveness
of the proposed model, but have been left out of the scope of
this paper.

IV. ILP FORMULATION

The allocation mechanism described above is heuristic, and
there is no assurance that it is effective in optimally fitting the
bandwidth profile of the new request

{
fk(τ) , τ = 1, 2...Θ

}
with the existing profiles of reserved bandwidth on the links
{um(τ) , τ = 1, 2...Θ}. In order to evaluate the goodness of
our approach, we need to consider a performance metric and
compare with a reference performance bound. To this purpose,
we consider a Integer Linear Programming (ILP) formulation
to the problem of allocating a given set of demands with
assigned time-varying bandwidth profiles in a capacitated
network, with the general objective of minimizing the peak
reserved bandwidthvm on the network links.
We will consider MIN-MAX, MIN-MEAN and mixed opti-
mization objectives: the factor0 ≤ α ≤ 1 in the objective
function to be minimized can be varied to trade-off between
these concurrent objectives. We preferred this approach instead
of defining a convex cost function as done in some previous
works, e.g. [4] [5]. With the convex-cost approach, one applies
an increasing penalty on the link load, and in our case we
do not need to introduce such a penalty. In fact, we use
ILP to solve the off-line instance of the routing problem,
therefore assuming full knowledge of the set of demands under
optimization, and no penalty is needed to defer the emergence
of bottlenecks.
The optimization problem can be formulated as follows3:

Minimize:

c = α · cmax + (1− α) · cmean

Subject to:

∑

m→sk

rk
m = 1,

∑

m←sk

rk
m = 0 ∀k, (4a)

∑

m→dk

rk
m = 0,

∑

m←dk

rk
m = 1 ∀k, (4b)

∑
m→n

rk
m −

∑
m←n

rk
m = 0 ∀k, n 6= sk, dk (4c)

3The notation “m → n” [resp. “m ← n”] identifies the set of directed
links m that have noden as source [resp. destination].



um(τ) =
∑

k

fk(τ) · rk
m ∀m, τ (5)

vm ≥ um(τ) ∀m, τ (6)

vm ≤ Cm ∀m (7)

cmax ≥ 1
Cm

· vm ∀m (8)

cmean =
1
M

·
M∑

m=1

1
Cm

· vm (9)

rk
m ∈ {0, 1} ∀k, m (10)

Constraints 4 are classical network flows constraints. In
particular 4a and 4b refer to the demand ingress and egress
nodes respectively, while 4c to the remaining intermediate
nodes. Eq. 5 defines the reserved bandwidth on linkm for each
time slot. Eq. 6 defines thepeaklevel of bandwidth reservation
on link m. Eq. 7 enforces the capacity constraint. Finally, eq.
8 and 9 define respectively the maximum and mean value of
link load, which are the two terms in the cost function to be
minimized.
The above ILP formulation has the same structure of a clas-
sical multicommodity-flows formulation (ref. [13]). The only
variant is that the demand size and the associated constraints
are defined for each time slot. This formulation can not be
resolved for the considered network under test with a large
number of demands (in the order of103). Its integer relaxation
with continuous routing variables0 ≤ rk

m(τ) ≤ 1 will be used
in section V-C to provide a performance bound to the off-
line routing problem, hence to the on-line heuristic algorithm
described in section III.

The routing model expressed by the above formulation, as
well as of the heuristic on-line algorithm, is an example of
fixed routing, in that each demand route is fixed in time.
In fact, a single routing variablerk

m is defined across the
full set of time-slots. In our work we were interested in
evaluating the potential gain in bandwidth saving that can
be achieved by avariable routingmodel, where the route of
each demand is allowed to change from time-slot to time-slot.
The ILP formulation for the variable routing problem with
time-varying demands only requires a minor adaptation to the
above formulation: the substitution of the routing variablesrk

m

with rk
m(τ), and the replacing of constraints 4 and 5 with the

following ones:

∑

m→sk

rk
m(τ) = 1,

∑

m←dk

rk
m(τ) = 0 ∀k, τ (11a)

∑

m→dk

rk
m(τ) = 0,

∑

m←dk

rk
m(τ) = 1 ∀k, τ (11b)

∑
m→n

rk
m(τ)−

∑
m←n

rk
m(τ) = 0 ∀k, τ, n 6= sk, dk (11c)

um(τ) =
∑

k

fk(τ) · rk
m(τ) ∀m, τ (12)

In practice, the implementation of variable routing would
add complexity and overhead to the network architecture, and
the global rearrangement of demand routes at each time-slot
boundary is something that any ISP would dislike. Therefore,
the variable routing model is not attractive unless the cost of
the additional complexity is payed-off by a sensible resource
saving. The comparison between the bandwidth consumption
with the fixed and variable routing formulations, given in
section V-D, provides a helpful insight into this issue.

V. NUMERICAL RESULTS

We implemented in a ad-hoc simulator the on-line routing
mechanism described in section III. The ILP instances where
implemented in AMPL [14] and solved with CPLEX [15].
We run a number of simulations targeted at investigating the
following topics:

• Impact of the choice of link-weight function on the on-
line algorithm performances.

• Allocation efficiency of the on-line algorithm compared
to the relaxed off-line problem instance.

• Comparison between variable and fixed routing.
• Impact of time-slot granularity.

All the experiments were run on two test topologies of
14 and 30 nodes. The former (fig. 1) is the celebrated NSF
topology which has been extensively considered in several
previous works in routing. The latter (fig. 2) is the same used
in [16], with the arbitrary addition of two links to raise the
node degree to 3.
We considered the following performance metrics:

• The mean and maximum values of the peak link band-
width across all the network link, denoted bycmean and
cmax respectively.

• The maximum number of allocated demands before the
1st, the10th and the100th rejection, denoted respectively
by b1, b10 andb100.

Given that all demands have identical average profiles, it is
meaningful to consider the number of allocated demands as a
metric for network load. In this perspectiveb1 is taken as the
boundary indicator of the non-saturated region, that constitutes
the network operational region in the practical cases. Instead,
b10 andb100 are taken as indicators of the quasi-saturated and
fully-saturated region boundaries.

A. Traffic model

We considered a random arrival process of connection
requests to the network. For each ingress-egress pair(i, j)
demands arrive according to a poisson process of intensity
λij . We adopted a flat spatial distribution of traffic intensities,
i.e. λij = λ, ∀i, j.
For each demandk, its bandwidth profile is built randomly by
extractingΘ independent samples, one for each time slot, out
of the discrete set of bandwidth units{0, 1..5}. In case of null
profile (all 0s) the extraction is repeated. The link capacity is
set to 125 units in each direction. By considering a bandwidth
unit of 20 Mbps, this correspond to a link capacity of 2.5



Fig. 1. 14-nodes test network (21 links).

Gbps, with a maximum requested bandwidth of 100 Mbps.
The demand duration is infinite, so that after a certain number
of demands have been allocated the network approaches
saturation and starts to reject new requests. In the following we
will denote a sample sequence of requests as an “input trace”.
When comparing different routing schemes, we run parallel
experiments with exactly the same input traces.
The traffic model adopted in this work is admittedly arbitrary
and very simple. It does not pretend in any way to be
representative of real traffic distribution in space nor in time.
The synthesis of a convincingly representative traffic model is
still an open point for research, despite the recent considerable
achievements towards the comprehension of real traffic dy-
namics (see for example [1] and [17]). In any case, such model
can not be independent from the underlying topology structure,
given that in most cases the topology building processfollows
the evolution of the traffic distribution. Perhaps, in force
of such intimate correlation, the research community should
pursue the definition of a unique topology/traffic model. So far,
there is no established and widely-accepted model for traffic
generation at the macroscopic scale. Therefore, in our study we
had to arbitrary choose a traffic model, and we gave preference
on purpose to one that is as “neutral” as possible: flat spatial
distribution (λij = λ) and bandwidth samples uncorrelated in
time. Moreover, having in mind that the direct application of
such algorithm is to support the delivery of tv-VPN services,
an additional obstacle to the adoption of a realistic model
of bandwidth profiles is the fact such service have not been
deployed to date. The replication of this study with different
topology/traffic models will be itself an interesting direction
for further research.

B. Choice of the link-weight function

In a first set of simulations we investigated the impact of
the link-weight function on the performances of the on-line
routing algorithm. We considered several different types of
function, among the others those given in table I. For each of
them, we run 500 simulations and reported in the table the
mean numberbn of allocated demands before thenth blocked
request, withn = 1, 10, 100. In particular, the value ofb1

directly expresses the capacity of the on-line routing algorithm
to fill the network before that service degradation appears in
the form of request blocking.
Beyond such metrics, it is also important to consider the ability
of the on-line routing scheme to save network resources, i.e.
bandwidth. In fig. 3 we plot the values ofcmax and cmean

after each allocated demand for a sample input trace, untilb1.
The general objectives of minimizing bandwidth usage and
maximizing demand allocation are not in contrast. Instead,

Fig. 2. 30-nodes test network (61 links).

TABLE I

COMPARISON BETWEEN DIFFERENT LINK-WEIGHT FUNCTIONS FOR THE

ON-LINE ALGORITHM : MEAN VALUES OF bn OVER 500 TRIALS (STD.DEV.

IN BRACKETS).

14-nodes net. 30-nodes net.

link-weight fun. b1 b10 b100 b1 b10 b100
629.7 664.3 742.7 1106.0 1160.8 1303.9

A wm = Cm
Cm−xm

(33.3) (29.9) (22.5) (55.4) (50.7) (35.2)

640.2 671.1 746.7 1181.0 1235.2 1371.7

B wm = e

Cm
Cm−xm (28.4) (27.1) (22.5) (51.8) (48.6) (30.8)

599.0 631.9 719.9 1097.7 1148.2 1278.2

C wm = 1 (31.6) (29.3) (22.4) (51.8) (47.5) (32.1)

622.2 654.5 738.6 1116.2 1161.8 1296.0

D wm = xm (31.3) (28.2) (23.3) (54.8) (51.2) (34.4)

228.5 264.0 387.2 403.1 441.9 628.5

E wm = exm (17.4) (17.1) (20.5) (25.1) (25.4) (28.0)

the minimization of mean and maximum link bandwidth are
often in contrast. In fact, a preferential selection of shorter
paths tends to minimizecmean at the cost of a potentially
largercmax. On the contrary the preferential minimization of
cmax pushes towards longer detours.

Our results show that the link-weight function “A” and
“B” produce the best performances. The allocation capacity
of “A” is always higher than “C” and “D” (b1 in table I),
with a lower cmax in the full range of demands (fig. 3). The
function “B” allocates more demands than “A” (approximately
+2% for the 14-nodes and≈ +7% for the 30-nodes), while
keeping a lowercmax at the cost of a highercmean. This
means that function “B” tends to produce longer paths than
“A”. Between “A” and “B” we give preference to the former,
as we believe it is a good compromise between allocation
power (high b1) and global bandwidth usage (lowcmean),
and unless differently specified in the rest of this paper we
will adopt it in the on-line algorithm.We recognize that such
preference might appears like “a matter of taste”, on the
other hand there is no objective metric telling how much
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Fig. 3. Comparison betweencmean and cmax for different link-weight
functions for a sample input trace.

an operator is accepting to trade path lengths for allocation
power, the decision being driven by external factors (e.g.
the policy of link resizing). We remark that in general it
is not difficult to tailor the on-line algorithm to the specific
preferences of a network operator, for example by including
additional constraints on the maximum path length, or a very
high penalty for exceeding some link bandwidth watermarks,
etc. It is out of the scope of a research paper to elaborate
the details and possibilities of such “customization” process.
Rather, we are interested in providing a proof-of-concept that
the basic underlying algorithm is efficient, and simple enough
to be adapted to a broad range of practical scenarios.

C. Comparison with LP off-line

After tuned the on-line algorithm with the choice of a
suitable link-weight function, we were interested in evaluating
the goodness of our on-line algorithm with respect to a
provable bound. To this purpose, in section IV we developed
a ILP formulation to the problem of allocating a given set
of demands with time-varying traffic profile in a capacitated
network (off-line problem). We solved its integer relaxation,
by letting the routing variables be continuous in0 ≤ rk

m(τ) ≤
1. This corresponds to the possibility of arbitrary multipath
routing (also called “splittable traffic” in [7]).
In fig. 4 we reported thecmean and cmax curves as obtained
with the on-line algorithm for a sample input trace. Both
the cases of “A” and “B” weight function are plotted, and
compared with the optimal values obtained by solving the
off-line problem instance with the relaxed LP formulation,
for different number of demands. More precisely, the optimal
values ofcmean (circles in fig. 4) where obtained by solving
the MIN-MEAN form of the LP/off-line problem, i.e. with
α = 0 in the objective function. Conversely, the optimal values
of cmax (triangles) where obtained by solving the MIN-MAX
problem (α = 0.99). We also tried with intermediate values
of 0.01 < α < 0.99, and we found that in all cases the

output values ofcmean and cmax where extremely close to
that reported in in fig. 4. In other words, the quality of the
solutions with respect to the dual metriccmean and cmax

was quite robust to changes in the coefficient of the objective
function. Interestingly, a similar result was reported in [4] with
a completely different cost function (convex piece-wise linear).
From fig. 4 it can be seen that the the on-line algorithm
achieves a mean peak bandwidth reservation which is very
close to the optimum, especially in case of “A” link-weight
function. The distance from the optimalcmean is negligible
when the load is low (until 700 demands). After this point,
the on-line algorithm with the “B” function produces higher
cmean, while with the “A” function it more closely follows
the optimality. In any case, the deviation from the optimality
is of few percentage points.
Regarding the maximum peak bandwidthcmax, the on-line
algorithm leads to larger values than the optimal for light load.
This is not a major concern, since in such region the peak
link bandwidth is faraway from saturating the link capacity,
therefore the risk of emerging bottleneck links that could
potentially block new demands is still negligible. On the other
hand, when the network load augments, the on-line algorithm
assigns higher link weights to heavy-loaded links, so that
the growth of cmax slows and its values get closer to the
optimal ones. The convergence ofcmax towards the optimum
occurs earlier for the “B” link-weight function, but at the cost
of a slightly largercmean: this clearly indicates a stronger
preference for longer but less loaded paths.
The above results globally show that the allocation behavior
of the on-line algorithm is within few percentage points from
the optimality with respect to mean and total bandwidth usage,
with acceptable performances in terms of maximum link load.
Our conclusion is that the proposed on-line scheme, still very
simple, can be regarded as highly efficient. This lets strict
margins of further improvement. Hence, it seems there is small
room for further refinements and/or additions to the algorithm
which are likely to come along with an increase in system
complexity and/or reduced scalability, unlikely to be payed-
off by few percentage points of performance improvement.

D. Fixed vs. variable routing

The on-line routing scheme proposed in section III couples
time-variable bandwidth reservations withfixed routing. In
fact, the amount of bandwidth reserved by a generic LSP on a
link follows a time-varying profile, but the LSP route is fixed
in time and does not change.
Removing the fixed routing constraint would mean to allow
the demand route to change from time-slot to time-slot. This
would add more flexibility to the allocation model, and po-
tentially improve the global bandwidth saving by allowing the
route configuration to adapt to the specific traffic distribution
in each time-slot, irrespective of what happens in the others.
We will refer to such scheme asvariable routing, as opposite
to fixed routing. The main drawback of variable routing is that
any such scheme would require additional network capabilities
and fatally add complexity to the network protocols, for
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Fig. 4. Comparison between mean and max bandwidth usage with the on-
line algorithm (“A” and “B” weight functions) and the optimal values obtained
with the off-line relaxed problem instance.

instance on the control plane.
In our investigations we were interested in evaluating the
potential bandwidth saving of variable routing versus fixed
routing, in the context of time-varying bandwidth profiles.
To this purpose, we derived in section IV a ILP formulation
for the associated off-line problem: given a set of demands
and associated bandwidth profiles, find the bestset of routes
(one for each time-slot) for each demand. Again, the objective
function to be minimized was the peak link bandwidth, through
the metricscmean andcmax, and there was no penalty for route
changes.
We solved the relaxed off-line instances of variable and fixed
routing for the same set of input traces, for different number
of demands, for both the considered topologies, and with
different values ofα. Quite unexpectedly, in all cases the
distance between the values ofcmean andcmax obtained with
variable and fixed routing was extremely close, and in most
cases indeed negligible. In order to get a deeper insight into
the phenomenon, we plotted in fig. 5 the full complementary
distribution function (CDF) of the peak link load over all the
network links, obtained with the variable and fixed routing
versions of the off-line problem with relaxed routing variables
andα = 0.1, on the 30-nodes network and for a total of 1030
demands. It can be seen that the two distributions are very
close to each other. In fig. 5 we also reported the CDF obtained
by the on-line algorithm (with the “A” function), loaded with
a sequence of the same set of demands. Again, the closeness
of this curve to the others constitutes a further confirmation
of the effectiveness of our on-line algorithm.
Similar results hold for the 14-nodes network. In that case,
we verified for a sample input trace that the relaxed off-
line problem becomes unfeasible after 650 demands, both
with fixed and variable routing, while the on-line algorithm
accepted 635 demandsbefore the first rejection, i.e. only -2%.
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Such results globally show that the optimal solution obtained
with relaxed (splittable) variable routing holds the same band-
width usage than relaxed fixed routing. In other words, the
fixed routing constraint has a marginal impact on the quality
of the optimal solution.
This conclusion could seem counterintuitive. In fact, it is easy
to provide simple counterexamples - small graphs with a small
number of demands - where the gap between fixed and variable
routing is considerable. On the other hand, in networks with
a large size and/or a large number of demands the statistical
impact of such pathological cases is likely small. Admittedly,
a similar explication was reported by Fortz and Thorup in
[4]. We believe that this argument might explicate not only
the closeness of the optimal values for fixed and variable
routing, but also the the closeness of our on-line algorithm
to the optimality.
Our findings are consistent with the results found indepen-
dently by Fortz and Thorup [4] and by the same authors [5] in
other application contexts. A comparative discussion between
the three works is given in the section VI.

E. Impact of time-slot granularity

In the above sections we showed that the proposed on-line
algorithm is effective in exploiting thea priori knowledge of
bandwidth profiles to minimize the overall bandwidth usage. In
this section we are interested in evaluating the gain achievable
by the proposed scheme versus the traditional reservation
strategy, which assumes knowledge of the peak bandwidth
only. At the same time, we are interested in assessing the
dependence of such gain with respect to the granularity of the
time-discretization, i.e. the number of time-slotsΘ.
In the traditional reservation scheme (hereafter referred to
as “peak-based”) the demand size is represented by a sin-
gle value, namely the peak requested bandwidthfk =
maxτ=1..Θ

{
fk(τ)

}
. Hence, the bandwidth reserved on each



link is also a scalar, and will be denoted asvm. Instead, in our
scheme both the demand size and the link reserved bandwidth
are vectors of sizeΘ in the time-slot indexτ .
To compare the two schemes, we implemented a “peak-
based” on-line algorithm that reserves an amount of bandwidth
equal to fk for each demand along its path and for the
entire day-time. The route selection is similar to that escribed
in section III, with a link-weight function that is inversely
proportional to the residual bandwidth (“A” function), the only
difference being in the definition of the residual bandwidth
itself. Formally:

wm =
Cm

Cm − (vm + fk)
+ ε (13)

The peak-based on-line algorithm was compared with that
proposed in section III, referred here as “profile-based”. The
comparison was made for different values of time slot gran-
ularity, from Θ = 2 (12-hours slots) toΘ = 24 (1 -hour
slots). The caseΘ = 1 was taken as a reference, since in
this case there is no distinction between the two approaches.
Twin experiments were run with peak-based and profile-based
algorithms for the same input trace. The figure 6 plots the
number of allocated demands before the1st, 10th and100th

rejection (b1, b10 and b100), for the 30-nodes network. Each
point is the average over 500 simulations. As expected the
peak-based algorithm is sensibly less efficient: its allocation
power is between 36% and 82% less than the profile-based
algorithm.
Furthermore, the performance of the peak-based strategy be-
come less and less efficient with increasing number of time
slots, while for the profile-based allocation the performance
degradation is marginal. This was expected and can be easily
explained in the light of the adopted traffic model, by consid-
ering the average per-demand bandwidth consumption for the
two schemes. In fact, the average amount of bandwidth that is
reserved by the peak-based strategy in each time slot is (E (·)
denotes the sample average):

E
(

max
τ=1..Θ

{
fk(τ)

})

that is increasing withΘ given that thefk(τ) samples are
extracted independently. Instead the profile-based strategy al-
locates on averageE

(
fk(τ)

)
, which is independent fromΘ.

This is confirmed by fig. 7, wherein we compared the growth
of reserved bandwidth (cmean and cmax) with the number of
demands for the two algorithms, for two different values of
Θ. The slopes of such curves roughly represent the average
per-demand bandwidth consumption. It can be seen that a
considerable difference hold betweenΘ = 3 and Θ = 8
with the peak-based algorithm. Instead with the profile-based
approach the variation withΘ is minimal.
A certain performance degradation of the profile-based scheme
with increasingΘ was expected, since an increase in the
number of time slots directly results in a higher variability
of the per-demand profile due to the independent extraction
of the fk(τ) samples. In turn this would make the matching
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between mutually compensative demands more problematic.
The fact that the expected degradation is extremely slow
(approximately−6% from Θ = 2 to Θ = 24) is a further
indicator of the power of the proposed algorithm.

VI. D ISCUSSION ON THE RESULTS

In this section we expand the discussion about the ex-
perimental results reported in section V-D, and relate them
with the experimental results of two previous works [4] and
[5]. The three works refer to different application scenarios:
configuration of a connection-less network [4], configuration
of a connection-oriented multi-layer network (namely IP over
WDM) [5], and on-line routing in a MPLS network (this
paper). Despite such differences, all these papers share some
fundamental commonality in the results. In fact, they all
consider the problem of network configuration under the
condition that the input traffic is variable in time - with time-
of-day periodicity - and knowna priori. Given the different
application contexts, the terms “network configuration” and
“input traffic” assume different meanings. A solution of net-
work configuration is a set of OSPF/IS-IS link weights in
[4], a logical topology plus a set of LSP routes in [5], and
a set of LSP routes here. The input traffic is a node-to-node
traffic matrix in [4], and a set of point-to-point demands in our
works. In all the three works some method was proposed that
explicitly takes into account the amount of traffic at different
times - assumed known in advance - to produce a fixed (or
static) network configuration solution that can accommodate
the traffic and its variability. In all the three works it is found
that the goodness of such a fixed solution is very close to that
achievable with independent optimizations at different times
(an approach referred to as “time-specific” in the following).
More precisely, Fortz and Thorup considered two different
traffic matrices (night and day), and found that the quality of
theirsub-optimalfixed solution is within 10% from theoptimal
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time-specific solution. Analogously, in [5] the authors found a
similar distance between thesub-optimalfixed solution (called
JCET therein) and thebest foundtime-specific solution (called
ICET). In fact, in that context it was not possible to give a
provable optimality bound because the associated optimization
problem was intrinsically non-relaxable. Again, in this paper
we found that the quality of thesub-optimalfixed solution
(as given by the on-line heuristic) is very close to theoptimal
time-specific solution (as given by the relaxed off-line instance
of the variable routing problem). Additionally, we found that
the quality of theoptimal fixed solution (as given by the
relaxed off-line instance of the fixed routing problem) closely
approximates theoptimal time-specific solution.
The similarity between these results is indeed remarkable,
considered that they were obtained in very different application
contexts, with different traffic models, parameters, topologies,
cost functions etc.
In summary, the common message behind such works is that
in several networking scenarios with variable input traffic
there is no need of variable network configurations, as far
as the traffic variations are known in advance or can be
predicted to some extent. We believe that this is an important
contribution of the three works as a whole, that indicates a

promising direction for further research, with both academical
and practical implications. On the academical side, further
research efforts should be spent in investigating whether there
is some more general theoretical principle underlying such
results, that can explicate them at a broader level than the
specific application scenarios in which they were conceived.

VII. C ONCLUSIONS AND FUTURE WORK

In this work we proposed a simple on-line algorithm for
the fixed routing of demands with variable bandwidth require-
ments, to be applied in virtual-circuit platforms like MPLS.
Basically, the algorithm proposed here is an extension in the
time domain of an existing dynamic shortest-path approach.
We also provided ILP formulations for the associated off-
line problem, both for fixed and variable routing, and we
used them to obtain reference performance bounds for the on-
line algorithm. The results show that our algorithm is highly
efficient and closely approaches the optimality in terms of
bandwidth usage.
Beyond its efficiency, an important source of attractiveness
resides in its extreme simplicity, that makes it suitable to be
adapted in more advanced routing scenarios. For example,
considering the problem of routing fault-protected demands, it
can be straightforwardly incorporated in the model proposed in
[9] [10] in order to provide a global scheme for single and dual
fault protection, with and without bandwidth sharing, in pres-
ence of demands with time-varying bandwidth requirements.
This is one of our current working directions.
Based on the proposed scheme, ISPs might find convenient
the delivering of more flexible services, for example time-
varying VPN, that better match the customer needs in terms
of bandwidth provisioning timing. Also, from the above con-
siderations ISPs are solicited to monitor and put efforts in the
prediction of the full time-of-day traffic profiles (e.g., on a 12-
or 8- hours time-slot granularity) and not only of their peaks.
In fact, we showed that with the proposed scheme such full
information can be directly translated into a considerable gain
in resource saving and allocation power.
In a broader perspective, the results presented here suggest
that the a priori knowledge of the per-demand traffic pro-
files can be exploited to achieve an optimal static routing
configuration which cannot be further improved by dynamic
reconfigurations. This lets small room to the usefulness of
dynamic reconfiguration schemesprovided that future traffic
profiles are known or can be predicted in advance. Therefore,
the installation of rerouting functionality into the network for
tracking changes in the traffic pattern might be avoided at all,
or at least such mechanisms might be relegated to handle the
unpredictable components of the global traffic.
Admittedly, our results are limited to the assumptions made in
this work, particularly about the choice of the traffic model.
We recognize that a conclusive quantitative assessment of our
scheme necessitates a topology/traffic model more thoroughly
bound to reality. On the other hand, the fact that very sim-
ilar results were obtained in other works [4] [5], carried in
different contexts and for different topology/traffic models is



encouraging about the validity of our conclusions.
We are currently investigating our scheme under different traf-
fic models, for instance with non-flat spatial traffic distribution.
This second phase of investigations is in a very preliminary
stage. Still, to date we only found further confirmations to the
findings reported in this paper. Our feeling is that the general
results reported here arerobust with respect to the choice of
the topology/traffic scenario. The verification of this statement
needs of course further investigations, but it seems itself an
interesting directions for further research.
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