
Experience from implementation of a distributed
MPLS-TE control plane in the TANGO testbed

R.Albanese∗, A.Bosco+, A.Botta+, P.Iovanna+, A.Liburdi∗, M.Listanti∗, U.Monaco∗, F.Ricciato∗
(*) INFO-COM dept. of University “La Sapienza” of Rome, Italy

(+) CoRiTeL, Rome, Italy

Abstract— This paper reports on the design and implemen-
tation of an experimental testbed of PC/Linux routers with a
dynamic control plane based on MPLS-TE. We present some
key aspects of the architecture and report on our experience
in their prototypical implementation. In particular, we focus
on two main topics: multiclass bandwidth allocation and fault
protection. Regarding the former, we describe a novel allocation
model that is versatile still simple to implement within the existing
protocols. Regarding the latter, we detail here the issue of fault
notification, achieved through IGP flooding. Finally, we present
some preliminary experimental results. We believe that the ideas
and experimental insight contained in this work will be helpful
to other people involved in standardization and implementation
of MPLS-related control plane.

I. I NTRODUCTION

The definition and design of an advanced dynamic control
plane for future MPLS network has attracted a large interest in
the nowadays networking arena. This challenge is addressed
by extending and integrating existing signaling and routing
protocols into the so called MPLS-TE protocol suite [1] [2].
We are currently involved in the design and implementation
of an experimental testbed - on PC/Linux platform - with a
dynamic control plane based on MPLS-TE. This activity is part
of a broader research project called TANGO [3]. In this paper
we present some key aspects of the network architecture and
report on our experience in a prototypical implementation. In
particular, we focus on two main topics: multi-class bandwidth
allocation and fault protection. Regarding the latter, we detail
here the issue of fault notification. We believe that the ideas
and experimental insight contained in this work will be helpful
to other people involved in standardization and implementation
of MPLS-related control plane.
The rest of the paper is organized as follows. In section II
we briefly describe the overall architecture, which includes
an end-to-end protection scheme. In section III we present a
novel multi-class bandwidth allocation that is rather versatile
still rather simple to implement in the MPLS-TE framework.
In section IV we discuss our choice to implement fault notifi-
cation scheme based on OSPF-TE flooding, along with some
implementation details. Finally, in section V we report some
early experimental results and in section VI we conclude.

1This work was supported by the Italian Ministry for University and
Scientific Research through the TANGO Project (PNR 2001-2003, FIRB).

II. OVERVIEW OF THE ARCHITECTURE

The traffic engineering scheme implemented in the TANGO
testbed is fully distributed, without any centralized element.
We consider a Diffserv over MPLS domain with on-demand
provisioning of several kinds of end-to-end connections. First,
each connection is associated to a single Diffserv class (cor-
responding to the “class-type” in [4]). In our testbed we
support EF, AF1x, AF2x and standard best-effort. Second,
each connection can be associated to one out of three different
protection classes: Unprotected (UP), Single-Fault Protected
(SFP) and Dual-Fault Protected (DFP). We adopt a end-to-end
fault protection scheme, so that one (for SFP) or two (for DFP)
disjoint backup LSPs have to be installed for each protected
connection along with the working LSP. It is assumed that
each connection request is processed by the ingress edge
router, which is the only network element responsible for
the whole set of associated LSPs. Fig. 1 shows the logical
organization of the software modules at the generic edge node.
The Node Manager (NM) is in charge of receiving connection
requests from the external and coordinate the information flow
between the modules. Therefore, for each incoming connection
request, the NM will first compute the end-to-end routes of
both the working and backup LSPs (arrow a). The route
computation is local to the edge node (source routing) and
run by a separate module called Route Selection Engine, RSE.
The route selection is based (arrow b) on the information
about network topology and residual link bandwidth that is
disseminated by OSPF-TE through the flooding of Opaque
LSAs (arrow c), and maintained at the local Network State
Database.
The route selection algorithm running at the RSE is the one
described in [5] and [6]. Basically it jointly selects the routes
of the working and backup LSP for the new connection taking
into account i) the disjointedness constraint, ii) the available
bandwidth constraint and iii) a bandwidth minimization /
balancing objective. The latter is achieved by simply mini-
mizing a link-cost metric that is inversely proportional to the
residual reservable bandwidth for the specific Diffserv class.
In fact, this information is carried in a specific element of
the Opaque-LSA, as detailed in section III. Additionally, the
RSE algorithm supports Shared-Risk Link Groups (SRLG)
and SRLG-disjointedness for protected demands. (see [6] for
details).
After selected the routes, the NM triggers the RSVP-TE



Fig. 1. Structure of logical modules at the edge node.

daemon (arrow d) to start the setup signaling procedures for
the working and backup LSPs. During the signaling phase,
each node along the path enforces Admission Control in
order to check current bandwidth availability. This step is
necessary because the link load information available at the
edge node may be not synchronized with the current network
state. This can be due to the intrinsic delays in the flooding
process and / or to the adoption of some conservative link-state
update policy aimed at controlling the flooding overhead. Such
policies (also called “flooding reduction” policies) restrict the
generation of new Opaque LSA upon reaching some critical
watermarks and / or on the basis of pacing timers, rather than
upon eachnew reservation, and they are essential to control
the flooding overhead associated to link load dissemination.
Examples of flooding reduction mechanisms can be found in
[7] [8] [9]. We adopted the algorithm proposed in [9] (see
also [5]), adapted to be applied in a multi-class environment
as detailed in section III.
Upon occurrence of link failure, the edge node must be notified
the event and promptly switch the incoming packets from
the working to the backup LSP. Therefore, a mechanism is
needed to convey the failure notification from the internal
node to the edge nodes. To date no mechanism has been
standardized in MPLS-TE to achieve that. Instead, this issue
is being discussed in the IETF [10] in the framework of
GMPLS, and two mainstream approaches have been proposed
so far: signalling-based and flooding-based fault notification.
We preferred the latter, and we implemented in OSPF-TE the
flooding of fault notification messages via Opaque LSA. In
section IV we discuss the reasons in support of this choice,
and report on the related implementation issues.
The development of the TANGO testbed foresees a set of basic
functionality that are currently under implementation, and a set
of additional capabilities that are included in the architecture
but deferred for implementation in a second phase. Among
those, we cite the support for setup and holding priorities, and
the support for shared protection.

III. T HE MULTI -CLASS BANDWIDTH ALLOCATION

SCHEME

In this section we provide some details about our proposal
for bandwidth allocation, that is how link capacity is shared
among multiple traffic classes. In the following we will index
by i the Diffserv classes supported within the domain, included
the best-effort. In particular, in the TANGO testbedi =
1, 2, 3, 4 will refer to EF, AF1x, AF2x and BE respectively. For
each generic link, we will denote byvi the currentassigned
bandwidth to classi, i.e. the sum of the bandwidth values
associated to all the current LSPs of classi. Typically, since
no bandwidth reservation is associated to best-effort LSPs,
the assigned bandwidth is always zero for BE, nevertheless
a counter has been associated to it for sake of compactness of
the notation.
Noticeably, we do not distinguish between the bandwidth as-
signed to working and backup LSPs within one class, therefore
both are accounted for invi. In fact, the route selection
algorithm running at the edge nodes does not distinguish
between working and backup bandwidth components, and it
simply prefers the links with the largest residual bandwidth.
Additionally we will denote byui the minimum guaranteed
bandwidth for class i. This is a manually configurable pa-
rameter offering to the operator the possibility to enforce a
minimum guaranteed cushion to classi on the specific link.
In other words, even in lack of any request for bandwidth of
classi, such bandwidth cushion can not be taken by LSPs of
other classes, but remains available for future requests of class
i. This is useful to apply bandwidth isolation between classes,
which is an important requirement as stated for instance in
[11]. Whether or not the provider is willing to apply such
minimum bandwidth cushion is a matter of business policy.
The default value forui is zero, except for best-effort traffic.
In fact, it is likely that any provider might want to let some
percentage of link capacity available to the public best effort
traffic.
From vi andui, the generic node responsible for the link will
extract the value of the currentreserved bandwidthas

ri = max (vi, ui). (1)

For each new LSP, theri counters are used to decide about its
acceptance through the specific link, that is to enforce local
Admission Control (AC).

A. The Admission Control algorithm

The AC function must ensure that at any time the reserved
bandwidth components meet a set of constraints. These can
be defined on the single values ofri (e.g., “the EF class can
not exceed 50% of the link capacity”), or on some partial
combinations (e.g., “the AF1x and AF2x classes jointly can
not exceed 70% of the link capacity”), or on their complete
sum (e.g., “the sum of reserved bandwidth for all the classes
can not exceed the link capacity”). Each of such constraints
can be dictated by business related policies or by QoS related
considerations - for example, the upper limit for the EF class,



whose packets are assumed to be prioritized over the rest of
the traffic, and belong to delay-sensitive applications, can be
obtained from simple queuing theory so as to bound some
statistical delay metric.
In general, the full set of constraints can be written in a formal
way as follows:

r′L ≤ c (2)

wherein r is the column vectorr = {r1, r2, ..} collecting
the single values of reserved bandwidth for each class. The
matrix L is a matrix of binary elements, each row represents
a single constraint, andc is the column vector of associated
limits. Similarly to r, we will denote byv andu the vectors
collecting thevi andui components.
With the above positions, the local AC algorithm can be
described in a very simple way. During the signaling setup
phase for a new LSP of classj and bandwidthb, the local
node will compute the tentative new valuev∗j = vj + b
(“update rule”) and since the new value of vectorr∗.
Therefore, he will check whether constraint (2) holds for the
new tentative vectorr∗. In the affirmative case the request can
be accepted and the new value ofvj recorded. Conversely,
the counters must be updated also when a LSP is removed
from the link. In the case that backup bandwidth sharing is
NOT applied, the simple update rule given above is applied
to both working and backup LSPs. On the other hand, in case
of bandwidth sharing, the update rule forv∗j for the setup of
a backup LSP must be revised accordingly to the algorithm
detailed in [6]1.

B. Advertising the residual bandwidth

When a LSP is installed / removed from the link, the local
node should advertise through OSPF-TE flooding the new
state of the link, in terms of unreserved bandwidth, in order
to let the edge nodes to update their network-state database
and make their route selection processes to be coherent with
the current network state. More formally, ifr is the currently
reserved bandwidth andc the maximum reservable bandwidth
(not necessarily the link capacity), the value ofg = c − r
is advertised, whereg represents theresidual reservable
bandwidth, that is the amount of additional bandwidth that
can be assigned to future requests. Moreover, the new value
of g is not advertised uponeachLSP installation / removal, as
this would cause a large amount of flooding overhead. Rather,

1In the current implemented version, we do not support bandwidth sharing,
which has been referred to a future development phase. However, in the
protection model presented in [5] [6] - originally inspired by the proposal
in [12] - the sharing functionality is handled locally at the intermediate nodes
along the paths, and does not require the separate dissemination of working
and backup reserved bandwidth components. With this approach the future
implementation of the sharing capability only requires an additional element
to the RSVP-TE messages in order to distribute the working LSP path to the
nodes along the backup LSP (as first proposed in [12]), and a different update
rule for v∗j when a backup LSP is installed / removed. For sake of space, we
refer to [6] for further details on this point. What is important here to stress
is that the implementation of bandwidth sharing can be regarded as a future
add-on, and does not requires changes to the allocation constraints nor to the
derivation of residual bandwidth described in the text.

the process of Opaque LSA generation is done according to
local update policies embedding watermark-based algorithms
and / or hold-down timers [7] [8] [9]. As a consequence,
it follows the process of variation ofg less accurately, but
with much less flooding overhead. In our model we extend
this approach to a multi-class environment. Accordingly, the
“residual bandwidth” becomes a vectorg = {g1, g2, ...},
whose generic componentgi represents the amount of
additional bandwidth that can be assigned to future requests
of classi in absence of new requests from other classes. At
any time, the computation of each componentgi is done
independently from the others and involves a very simple
manipulation ofr, L and c, as described in the following.
Consider the case that we want to compute the new value
of gj because the vectorv (and eventuallyr) has changed
due to LSP installation / removal for some class - not
necessarilyj - on the specific link. We replace the component
rj with rj + x in vector r, where x ≥ 0 is a temporary
support variable, and solve the simple optimization problem
yielding the maximum value ofx holding constraint (2), with
parametersri set to their current values. This is a trivial task
since the optimization involves a single variable and linear
constraints. Finally, we derivegj = x− vi. This computation
is repeated independently for each class except best-effort, so
as to build the vectorg. This vector can be advertised in the
Opaque LSA of OSPF-TE. Specifically, we use the sub-TLV
Unreserved-bandwidth to carry it in conformance with
the semantic defined in [13].
Given the independence between thegi components, the
same flooding reduction policy used forg in the single-
class environment can be straightforwardly applied to each
component separately. In particular, we used the same
mechanism described in [9] based on adaptive watermarks.
We notice that in general a new reservation in some class
impacts the residual bandwidth of all the other classes, in
force of the composed constraints. We also remark that the
sum of the components

∑
i gi can exceed the link capacity,

since each element has been computedin absence of new
requests from other classes. Such semantic greatly simplifies
the derivation ofg itself and the application of the flooding
reduction algorithm, and most importantly it is fully coherent
with the usage that the route selection algorithm described
above will make of such information. Finally, we remark
that the model proposed here comprises as special cases
the models being currently discussed in IETF, [11] [14]
[15], and is compliant with the requirements given in [11].
In particular, isolation is provided byui setting, while any
inter-class sharing can be obtained by appropriate design of
the constraint (2). The only difference between those drafts
and our proposal regards the support of holding and setup
priority, which is foreseen in our testbed as a future-phase
development.

Finally, let us consider the possibility to apply traffic en-
gineering to LSPs carrying best-effort (BE) traffic. We recall
that there is no bandwidth reservation associated to best-effort



traffic, still it is possible to envisage a model where explicit
routing capability is applied to BE LSPs. That means that
the new BE LSP can be routed over a more convenient route
than the default shortest-path, through a RSVP-TE signaling
with a valid Explicit Route Object (EROA and null reserved
bandwidth. There are several ways to define a goodness
criterium for best-effort paths, but in any case one has to
take into account the current network loadas seen from the
perspective of best-effort traffic. To this purpose, one could
think to define the “residual bandwidth” component for best
effort (g4 in our case) as the “measured residual capacity”
of the link, that isC − m, with C the link capacity andm
the last value of the whole aggregated consumed bandwidth.
The value ofm can be derived for example from the local
SNMP entry accounting for the total bytes sent in the last
measurement interval. The dissemination of such value in the
Unreserved-bandwidth sub-TLV would be helpful to
provide the edge nodes with a view of the real bandwidth
usage on the links, in addition to the amount of bandwidth
reservation.

IV. T HE FAULT PROTECTION SCHEME

The end-to-end protection approach requires some mecha-
nism to convey the fault notification from the internal node(s)
detecting the fault to the edge nodes which are in charge of
switching the traffic onto the backup LSPs. In the MPLS-TE
standards no solution has been given to address this point.
Instead, this topic is currently being discussed in the IETF
working groups in the context of GMPLS [10]. Basically two
approaches are being compared: signaling-based and flooding-
based. For our testbed we have preferred the latter, and we
have implemented a prototype of such functionality in the
OSPF-TE daemon.

A. The fault notification dilemma: signaling-based or
flooding-based ?

The signaling-based approach foresees the fault notification
message be carried by the RSVP-TE protocol, from the
detecting node upstream along the LSP to the ingress edge
node. This approach has several drawbacks. For instance
the number of messages generated upon a failure equals
the number of impacted LSPs, sayN . Thus, the detecting
node will generateN different messages, while each of its
reachable neighbors (sayk) will have to processN/k different
messages on average. In order to diminish the processing
overhead associated with this approach, one could think to
the aggregation of such messages, similarly to the proposal
made in [16]. On the other hand, this would require addi-
tional capabilities at the RSVP-TE daemon, namely message
aggregation and branching, which are not currently foreseen
in the protocol. Also, this solution would lead the signaling-
based dissemination process to closely reassemble a sort of
“partial flooding” along the network subgraph constituted by
the upstream LSP tree, an approach that does not participate
of the additional advantages of the complete flooding scheme
discussed below. In any case, the signaling-based approach

would require the detecting node to parse the entire set of
supported LSPs so as to identify those impacted by the fault (as
made explicit in [17]), and this would add processing burden
to the internal router.
With the flooding-based approach, the fault notification mes-
sage is flooded throughout the network. An attractive pos-
sibility would be to reuse the existing IGP (OSPF-TE or
ISIS-TE) flooding process of Opaque LSAs, a capability
that is intrinsically present in the MPLS-TE model. Recall
that the Opaque LSAs are flooded transparently through the
network, without triggering the re-computation of the routing
/ forwarding tables, and are used to disseminate link load
information in MPLS-TE. With this approach, there is no need
for the detecting node to parse the entire set of LSPs. Also,
the per-node processing load after a failure is limited to one
single message, while in the signaling-based approach without
aggregation the number of messages can span from zero toN
in the worst case.
Two additional advantages of the flooding-based approach are
the minimum notification delayand complete dissemination.
In fact, by assuming an equal processing time of the Opaque
LSA and RSVP-TE messages, and that each node floods
/ forwards the received message immediately, it is easy to
recognize thatIGP flooding always achieves the minimum
possible notification delay towards any edge node. In fact,
the path followed by a flooded message to reach the generic
edge node from the detecting one is always the minimum-
delay path - not necessarily coinciding with the minimum-hop
path, unless the transmission and propagation delay are the
same for all the links - while in the signaling-based approach
it depends on the actual length of the impacted LSP paths.
These are computed according to bandwidth constraints and
minimization / balancing objectives, which in general result in
non-minimum delay paths. This point was already suggested in
[18]: “[...] notification message exchanges through a GMPLS
control plane may not follow the same path as the LSP/spans
for which these messages carry the status. In turn, this ensures
a fast, reliable [...] and efficient [...] failure notification mech-
anism”.
Another general advantage of the flooding-based approach
versus the signaling-based is that the immediate dissemination
of the failure notification is complete, that is reaches all the
edge nodes and not only those responsible for the impacted
LSPs. This is helpful in preventing from erroneous route
selections in the aftermath of the failure. In fact, with the
signaling-based approach, those edge nodes not having any
LSP crossing the failed linkl will be not notified the failure.
Therefore there is a potential for them to include the failed link
into the selected path for a new LSP, which would result in
fastidious signaling overhead and re-computation procedure.
The potential for erroneous route selections is even higher if
we consider the possibility of multiple contemporary failures.
In fact, consider two generic links along the path of a generic
LSP, sayl1 and l2, the former being upstream with respect
to the latter. If both links fail simultaneously, the propagation
of l2 failure will not reach the edge node, due to upstream



interruption of the path. Again, there is a potential for this edge
node to include the failed linkl2 in the new selected routes.
With flooding-based approach such potentials are eliminated
as all edge nodes are immediately notified any failure.
The usage of link state IGP for fault notification is compliant
with RFC 3272 [19], where it is stated that network state
information may be distributed by link state advertisements
also under exceptional conditions.
As an alternative to IGP flooding, in the GMPLS context it
has been proposed to add flooding capabilities to the Link
Management Protocol (LMP) [20]. Despite this approach has
the undoubtedly advantage to avoid further modifications to
the IGP platform, on the other hand it would fatally lead to
the duplication of many flooding-related mechanisms between
IGP and LMP, and at the same time breaks the local nature
of the LMP protocol. Our preference for IGP was dictated
by the fact that LMP does not belong to the MPLS-TE
suite. One also has to consider the dramatic gap between the
amount of implementation workload required to inject fault
notification semantic in existing OPSF-TE message, compared
to the implementation from-the-scratch of a new flooding
process on LMP, that in the best case would achieve the same
performances of the well-tested IGP flooding.

B. Details of the prototypical implementation

In this section we report on some details of our prototypical
implementation of flooding-based fault notification through
OSPF-TE Opaque LSAs.
The Opaque LSA option (O-LSA for short) has been defined
in [21], where three types of O-LSAs are defined with different
scope: type 9 (link-local, flooded only within the subnetwork),
type 10 (area-local, flooded within the associated area) and
type 11 (flooded throughout the entire AS). The usage of
O-LSAs for traffic engineering purposes has been described
in [13], that specifically prescribes to use type 10 LSAs.
These are considered for the dissemination of link attributes,
included currently unreserved bandwidth, and introduces a
number of nine message elements associated to the link. These
are included in the O-LSA, and are called the sub-TLVs of the
“Link TLV”. All such features were already supported by the
OSPF implementation [22] that was used in the testbed.
We implemented the fault notification by means of type 10
LSA, therefore with area-level scope. This choice was mainly
dictated by ease of implementation. We are aware that this
solution only works if the whole network is included in a
single OSPF area. This is not a problem on our small scale
testbed, but it might be a serious restriction in large domains.
Therefore, in that case, one should probably consider to use
type 11 LSA2.
In our implementation, we used the sub-TLVTE-metric

2As an alternative, one could think to a different protection / restoration
model, intermediate between the per-link (or local) protection and the path-
based (or global, or end-to-end) protection, where protection switching is
enforced on a per-area basis. In this case, the switching nodes are not located
at the edges of a single link, nor at the edges of the network, but rather at
the edges of the IGP areas, so that area-local flooding would be sufficient to
disseminate the fault notification message.

Fig. 2. Hold-down timer in OSPF-TE. According to the standard [23], after
transmission of a LSA (L1) the subsequent LSA generated within 5 seconds
(L2) is delayed fro transmission until timer expiration (a). We introduced
timer-forcing for LSAs with a fault-notification content (b): in this caseL2∗
is sent immediately and the timer is reset. A state flag ensures that a further
LSAs (L3∗), still with a fault-notification content, can not force again the
timer (c).

introduced in [13] to carry the fault notification semantic: we
arbitrary set the default value for such field to be 0, while
the value 1 indicate failure of the link. We also manipulated
the sub-TLVAdministrative-Group to carry additional
information about the membership of the link to some Shared-
Risk Link Group (SRLG). This information is essential to the
edge nodes to select SRLG-disjoint routes.
A key point we had to cope with is the presence of hold-down
timers in OSPF. In OSPF [23] two timers are present to enforce
a minimum spacing between consecutive LSAs referred to the
same link. The first one,MinLSInterval , inhibits the gen-
eration of new LSAs for 5 seconds after transmitting a LSA.
The second one,MinLSArrival , imposes the discarding of
any new LSA received within 1 second since the last received
LSA. With such timers, the flooding of an O-LSA advertising
the failure of link j could be delayed in the case that the
previous Opaque LSA for the same link was generated within
the latter 5 seconds - for example to advertise a change in the
reserved bandwidth. In order to eliminate this possibility, we
introduced a mechanism called “timer forcing”. That means
the generation / reception of a new O-LSAs carrying a fault
notification semantic (i.e.,TE-metric set to 1) can force
the hold-down timer to expire immediately and be reset. The
timer is associated to a flag variable, which is set to 1 when the
timer is forced, and returns back to its default value 0 when
the timer expires normally. The arriving O-LSA can force the
timer only if i) it carries fault notification semantic andii) if
the flag variable is set to 0. This again enforces a minimum
spacing between O-LSA with a failure notification content.
This is explained in fig. 2 limited to theMinLSInterval
timer. With this mechanism we eliminated the interspacing
between a generic O-LSA and the first fault notification O-
LSA, but apart this “exception” the timer behavior remains
compliant with the standard.



Fig. 3. Testbed topology.

V. PRELIMINARY EXPERIMENTAL RESULTS

In this section we briefly report the results of some prelimi-
nary experiments. In particular, we were interested in assessing
the effectiveness of the flooding-based implementation of the
fault notification, and the achievable recovery delay after a
single link failure. To this purpose, we prepared the testbed
topology depicted in fig. 3, where a single SFP connection
is installed from host PALATINO to ESQUILINO, involving
LSP-1 (working LSP) and LSP-2 (backup LSP). All PC
are 2.0 Ghz CPU with Linux 2.4.20 kernel, equipped with
Ethernet 10/100 cards. A packet generator is installed in
CAMPIDOGLIO, sending UDP packets to PALATINO at
the fixed rate 1 packet/ms. These packet are mapped by
PALATINO into the working LSP-1 towards the destination.
A sniffer records all the packets arriving to ESQUILINO on
both its interfaces. At some instant, we disconnect manually
the link between VIMINALE and ESQUILINO dividing LSP-
1, and we count the number of packets that are lost in the
transitory. For example, if the last packet received from LSP-
1 has order numbern, and the first packet received from LSP-2
has order numbern + m, that meansm packets in total were
lost, corresponding to a recovery delay of approximatelym
milliseconds.
We repeated this experiments 25 times, and in most trials we
observed a recovery delay between 75 ms and 90 ms. But in 3
trials out of 25 the measured values were between 100 ms and
230 ms. We do not yet have an explication for these occasional
large values. Our preliminary investigations suggest that this
might be due to occasional longer delays imposed to the
packets by the forwarding module within the operating system.
When this happens to the packets carrying the fault notification
Opaque LSA, this translates into a longer notification delay.
However, we are carrying further investigations in order to
ascertain the cause of this occasional behavior.

VI. CONCLUSIONS

In this paper we briefly described the TANGO architecture,
with a focus on two keypoints: the multi-class allocation
model, and the fault notification mechanism based on OSPF-
TE flooding. The proposed solutions are original, and we

showed how they can be implemented within the existing
protocols for MPLS traffic engineering, particularly OSPF-
TE. On the basis of a prototypical implementation, we have
run some simple experiments in order to assess a very basic
performance metric, namely the achievable recovery delay.

We stress that such results are preliminary and were ob-
tained in ideal conditions: a small unloaded network, without
packets nor LSPs other than those under test. Collectively
they confirm the expectation that the reference of 50 ms of
Sonet/SDH can not be achieved at the packet layer. On the
other hand, they seem to be encouraging towards the possi-
bility of achieving end-to-end MPLS recovery in the order of
few hundreds of milliseconds in operational conditions.
Our current efforts are directed to repeat the measurements
in heavy-load network conditions, in order to assess the
robustness of the architecture, particularly as regards the fault
recovery scheme.

ACKNOWLEDGMENTS

The authors would like to thank A. Bosco, A. Botta, N.
Caione, G. Conte, P. Iovanna, A. Liburdi, A. Proia for their
active contribution to the implementation and experimental
activities reported in this work.

REFERENCES

[1] D. Awduche et al. Requirements for Traffic Engineering Over MPLS.
RFC 2702, September 1999.

[2] X. Xiao et al. Traffic Engineering with MPLS in the Internet.IEEE
Network, March/April 2000.

[3] TANGO project homepage. http://tango.isti.cnr.it.
[4] F. Le Faucheur, W. Lai. Requirements for Support of Differentiated

Services-aware MPLS Traffic Engineering.RFC 3564, July 2003.
[5] F. Ricciato, M. Listanti, A. Belmonte, D. Perla. Performance Evaluation

of a Distributed Scheme for Protection against Single and Double Faults
for MPLS. 2nd Int’l Workshop on Quality of Service in Multiservice IP
Networks (QoS-IP 2003), Milano, February 2003. Published in Lecture
Notes in Computer Science, vol. 2601, Springer, pp. 218-232.

[6] F. Ricciato, S. Salsano, M. Listanti. An Architecture for Differentiated
Protection agains Single and Double Faults in GMPLS.to appear in
Optical Networks Magazine, 2003.

[7] A. Shainkh, J. Rexford, K. G. Shin. Evaluating the Overheads of Source-
Directed Quality-of-Service Routing. Int’l Conference on Network
Protocols (ICNP), 1998.

[8] G. Apostolopoulos, R. Guerin, S. Kamat, S.K.Tripathi. Quality of
Service Based Routing: A Performance Perspective.SIGCOMM, 1999.

[9] A. Botta, P. Iovanna, M. Intermite, S. Salsano. Traffic Engineering
with OSPF-TE and RSVP-TE: Flooding Reduction Techniques and
Evaluation of Processing Cost.CoRiTeL Report. Submitted., 2003.

[10] Mail archive of the CCAMP working group.
http://ops.ietf.org/lists/ccamp.

[11] J. Ash. Max Allocation with Reservation Bandwidth Constraint Model
for MPLS/DiffServ TE and Performance Comparisons.draft-ietf-tewg-
diff-te-mar-01.txt. Work in progress, June 2003.

[12] R. Doverspike, C. Kalmanek, G. Li, D. Wang. Efficient Distributed
Path Selection for Shared Restoration Connections.INFOCOM’02, June
2002.

[13] D. Katz, K. Kompella, D. Yeung. Traffic Engineering Extensions to
OSPF Version 2).draft-katz-yeung-ospf-traffic-10.txt. Work in progress,
June 2003.

[14] F. Le Faucheur, W. Lai. Maximum Allocation Bandwidth Constraints
Model for Diff-Serv-aware MPLS Traffic Engineering .draft-ietf-tewg-
diff-te-mam-00.txt. Work in progress, June 2003.

[15] J. Ash. Russian Dolls Bandwidth Constraints Model for Diff-Serv-aware
MPLS Traffic Engineering.draft-ietf-tewg-diff-te-russian-03.txt. Work in
progress, June 2003.



[16] C. Huang, V. Sharma, K. Owens, S. Makam. Building Reliable MPLS
Networks Using a Path Protection Mechanism).IEEE Communications
Magazine, March 2002.

[17] J. P. Lang, B. Rajagopalan eds. Generalized MPLS Recovery Functional
Specification. draft-ietf-ccamp-gmpls-recovery-functional-00.txt. Work
in progress, January 2003.

[18] D. Papadimitriou, E. Mannie eds. Analysis of Generalized MPLS-based
Recovery Mechanisms (including Protection and Restoration).draft-ietf-
ccamp-gmpls-recovery-analysis-01.txt. Work in progress, May 2003.

[19] D. Awduche et al. Overview and Principles of Internet Traffic Engineer-
ing. RFC 3272, May 2002.

[20] T. Soumiya, R. Rabbat eds. Extensions to LMP for Flooding-based
Fault Notification. draft-soumiya-lmp-fault-notification-ext-01. Work in
progress, June 2003.

[21] R. Coltun. The OSPF Opaque LSA Option.RFC 2370, July 1998.
[22] Zebra Home Page. http://www.zebra.org/.
[23] J. Moy. OSPF Version 2.RFC 2328, April 1998.


