
1

Analytical/Simulation Optimization System for
Access Control and Bandwidth Allocation in IP

Networks with QoS

R. Bolla, R. Bruschi, F. Davoli, M. Repetto
Department of Communications, Computer and Systems Science (DIST)

University of Genoa
Via Opera Pia 13, I-16145 Genova, Italy

Email: lelus,franco,repetto,roberto.bruschi@dist.unige.it

Abstract— A multiservice IP network based on the DiffServ
paradigm is considered, composed by Edge Routers (ER) and
Core Routers (CR), forming a domain that is supervised by a
Bandwidth Broker (BB). The traffic in the network belongs to
three basic categories: Expedited Forwarding (EF), Assured
Forwarding (AF) and Best-Effort (BE). Consistently with the
DiffServ environment, CRs only treat aggregate flows; on the
other hand, ERs keep per-flow information (from external
sources or other network Domains), and convey it to the BB,
which knows at each time instant the number (and the
bandwidth requirements) of flows in progress within the domain
for both EF and AF traffic categories. A global strategy for
admission control, bandwidth allocation and routing within the
domain is introduced and discussed in the paper. The aim is to
minimize blocking of the "guaranteed" flows (EF and AF), while
at the same time providing some resources also to BE traffic. As
the main objective is to apply the above mentioned control
actions on-line, a computational structure is sought, which allows
a relatively fast implementation of the overall strategy. In
particular, a mix of analytical and simulation tools is applied
jointly: "locally optimal" bandwidth partitions for the traffic
classes are determined over each link (which set the parameters
of the link schedulers in the CRs, the routing metrics and
admission control thresholds); a "high level" simulation
(involving no packet-level operation) is performed, to determine
the per-link traffic flows that would be induced by the given
allocation; then, a new analytical computation is carried out,
followed by a simulation run, until the allocations do not
significantly change. The possible convergence of the scheme
(under a fixed traffic pattern) is investigated and the results of its
application under different traffic loads are studied on a test
network.

Keywords- IP DiffServ; QoS-IP; Resource Allocation.

 I. INTRODUCTION

Today’s Internet is a widely deployed network with
hundreds of millions of hosts, yet growing in size [1],
connected by a network architecture belonging to different
organizations. This results in a hierarchical organization, with
the ASs (Autonomous Systems) at the top and interconnected to
each other to form the backbone of the net. The internal
structure of ASs can be also hierarchical, reducing the number
of peers in every level, with many management benefits, such
as simplifying IP addresses assignment to secondary Internet

Service Providers (ISP) which also reduce IP routing table size,
limiting control traffic to smaller areas, and so on. This is very
simple in IPv6 [2], where the increased size of the address field
allows great flexibility in assigning and partitioning the whole
space. As an example of how a huge network can affect
performance, we cite inter-domain (among ASs) routing, where
BGP often fails to assure route stability and routing
convergence [3]-[5].

For these reasons, we choose a hierarchical structure for our
approach, and we assume to have few nodes on each level. At
the bottom level, nodes correspond to hosts; at higher levels,
nodes correspond to aggregates of nodes at lower levels. Such
architecture is very flexible: the same procedure can be used at
every level, with the only difference in the aggregation size of
the underlying network traffic. From now on, we therefore deal
only with the intra-level architecture.

Basically, there are two complementary philosophies in the
Internet to achieve Quality of Service (QoS) [6]: Integrated
Services (IntServ) and Differentiated Services (DiffServ).
IntServ tries to meet QoS requirements by reserving resources
for every single flow along its path across the network, so that
it can guarantee per-flow QoS. This is done by the RSVP
signaling protocol ([7,8]), and it becomes very heavy in the
presence of many flows. DiffServ is quite different, as it
identifies only several QoS classes, with different packet
treatment; it aims at satisfying common-class QoS
requirements, by controlling network resources at the nodes
(Per Hop Behavior, PHB [9]). For example, this is done by
setting suitable queue service disciplines, by limiting the
amount of traffic in the network, by assigning different
priorities, and by performing Call Admission Control (CAC).
A central controller, denoted as Bandwidth Broker (BB), is
dedicated to perform resource reservation, as well as to collect
aggregate information for the upper levels. The BB can run on
a dedicated machine or on a generic router and exchanges
messages with the network nodes by some signaling protocols,
in the same fashion as RSVP. We will analyze in detail in the
following what kind of information the BB needs to exchange
with the nodes in our proposal.

We have chosen to implement three QoS classes: Expedited
Forwarding (EF), Assured Forwarding (AF) and Best Effort
(BE). EF is the maximum priority traffic, and it should

2

experience very low loss, latency and jitter while traversing the
network [*]; such a service appears to the endpoints like a
point-to-point connection, or a leased line. AF is an
intermediate class, with less pressing requirements on
bandwidth, delay and jitter [10]. BE is the current Internet
traffic with no guarantees on throughput, delay and jitter.

A global strategy for admission control, bandwidth
allocation and routing within the domain is introduced and
discussed in the paper. The aim is to minimize blocking of the
"guaranteed" flows (EF and AF), while at the same time
providing some resources also to BE traffic. As the main
objective is to apply the above mentioned control actions on-
line, a computational structure is sought, which allows a
relatively fast implementation of the overall strategy. In
particular, a mix of analytical and simulation tools is applied
jointly: "locally optimal" bandwidth partitions for the traffic
classes are determined over each link (which set the parameters
of the link schedulers in the CRs, the routing metrics and
admission control thresholds); a "high level" simulation
(involving no packet-level operation) is performed, to
determine the per-link traffic flows that would be induced by
the given allocation; then, a new analytical computation is
carried out, followed by a simulation run, until the allocations
do not significantly change.

 II. RESOURCE ALLOCATION ISSUES

We have previously sketched our DiffServ network
architecture; we now need to explain how resources are shared
among competitive traffic classes and how to achieve some
form of fairness among the different traffic categories.

First of all, a suitable queuing discipline is needed to
achieve the required performance for every class: we have
chosen to use different queues on each link, one for each kind
of traffic. The EF queue is given priority over all others; if we
limit the amount of EF traffic in the network, this results in
very low delay and jitter experienced by these packets. To meet
this requirement, EF traffic is assigned a priority queue, which
is served by the scheduler as long as it is non-empty. Users
requiring this kind of service are asked to declare their peak
rate, which (given that this service is presumed to be very
expensive) we assume coinciding with their mean rate. Thus,
EF users are classified in a limited number of subclasses,
according to their peak rates. Classifiers and traffic
conditioners (meters, markers, shapers and droppers) are
required at the network edge to perform this task, as well as to
verify the compliance of the users’ traffic to the agreement, but
this issue is beyond our scope.

Once the EF queue is empty, AF high priority traffic is
served, while low priority packets are served only if there are
still unused AF reserved resources. Finally, when all these
queues are empty, BE traffic is served. An AF user declares its
mean transmission rate, from which we assign a maximum
peak rate. The mean transmission rate is always guaranteed to
users; better performance can be achieved if the network load
is low. Thus, at the edge nodes, packets will be marked as high
priority AF until they do not exceed the mean rate; surplus
traffic will be marked as low priority AF. Also in this case,

users are classified in a fixed number of subclasses, based on
their mean rate value.

Obviously, the performance experienced by the packets
depends on the amount of traffic flows of each category
admitted into the network: a CAC is necessary to achieve the
QoS promised by the DiffServ architecture. With such a
discipline, every queue is served at the maximum speed
allowed by the link; our aim is to control the bandwidth
reserved for each class on every link. Given the peak rate for
EF traffic, we know in advance how many connections can be
accepted not to exceed the reserved bandwidth. A similar
consideration holds for AF, except that mean rates are taken
into consideration instead of peak rates. Briefly, we fix two
bandwidth thresholds on each link: one for EF and the other for
AF; rates of flows traversing the link for each category can
never exceed these thresholds. BE traffic can exploit all the
unused link bandwidth at any time instant. This results in a
complete partitioning CAC [11] for both EF and AF, but not
for BE, whose upper bound is not fixed, but depends
dynamically on the bandwidth left free from the other traffic
flows. However, BE is guaranteed the link bandwidth
exceeding the two thresholds, but the queuing disciplines do
not assure any performance on delay and jitter.

Regarding routing, as EF and AF flows require QoS, we
think that this kind of traffic needs a fixed route from source to
destination, which appears to them as a virtual leased line [12].
Routing of both AF and EF connections is a priori fixed from
the BB, so that it can perform a CAC on the bandwidth
available on each traversed link and possibly deny access to the
network. Thus, we have already identified a first task for our
BB.

Since we wish to maximize the network throughput, we use
a simple min-hop metrics for both AF and EF PHB, to reduce
the number of links traversed. Otherwise, the whole
architecture is suitable for more advanced routing metrics [13],
especially those based on aggregation and multi-parameter
metrics [14]. For BE traffic routing, instead, we choose a cost
equal to the reciprocal of the residual available bandwidth left
from the connections with a guaranteed level of QoS. In this
case, paths vary dynamically as network load changes over
time.

The EF, AF and BE traffic is generated at the nodes of the
network as aggregates: this means that the same node can
generate more EF or AF connections or BE flows. In such a
way, we can easily view the node either as a host on the
network or as a border router connected to a hierarchical low-
level network (as mentioned in section I).

Now, the issue is how to share link bandwidth among the
three competitive classes. Obviously, QoS traffic is critical,
because it is thought of as a high revenue one. But we would
like to give some form of “protection” to BE, as well. To do
this, we assign a cost to each class (as explained later), and try
to minimize some given cost function. Nodes collect data on
the incoming traffic load, and then the BB gathers all these data
and computes a new allocation for all links. Finally, it sends the
EF and AF thresholds to each node for its output links. This is
the second task demanded to the BB.

3

To complete the description of our architecture, let us note
that a third task of the BB is to collect information about
domain ingoing/outgoing traffic from the nodes, and to act as a
node for the BB of an upper level.

 III. BB ARCHITECTURE AND ALLOCATION ALGORITHM

Allocating resources over the whole network is a very
complex task, especially if many links are present.
Furthermore, resources to be shared reside on each link.

As previously mentioned, the BB knows from every single
node the input traffic matrix for each flow; so, knowing also
the different allocations of resources for every link, the BB
would be able to simulate the behavior of the whole network in
terms of routing, mean link utilizations and blocking
probabilities. So, the BB is certainly the best network control
point to perform a centralized task for the optimization of the
whole system. However, when the input traffic matrix changes
enough to make new allocations necessary, in order to cope
with the variations and maintain a high level of utilization, the
task performing dynamic resource allocation has to be
launched on the BB and should complete its calculations as
soon as possible.

In order to reduce the computational complexity of this
allocation task, we have decided to calculate the new
thresholds independently for each link, (in a “locally optimal”
way) and to use a very fast network simulator to collect, link by
link, all the data necessary to perform this operation. More
specifically, the independent link allocations, calculated in this
way, have to be tested with a new simulation process to
understand if the new network settings have produced routing
changes, undesired link utilizations or high blocking
probability. In particular, it has to be noted that our BE routing
metric depends on the link EF and AF allocations and on the
ensuing traffic distribution; but the allocation itself, in its turn,
depends on the paths selected by the routing algorithm. A
congested link at a certain time instant can become an empty
one after allocation owing, for example, to the discovery of a
new optimal route for BE traffic. This mechanism should then
be applied iteratively, until a fixed point is hopefully reached,
if the traffic patterns remain stationary for a sufficiently long
time interval.

Therefore, the mechanism is composed by the iteration of
two different modules: a fast network simulator (a numeric
fluid model that works at aggregate flow level) and an
allocation algorithm, based on an analytical model (a stochastic
knapsack) and on the output of the simulator, which calculates
the resource reservations independently for each link.

Summarizing the resource allocation architecture, the BB
alternates simulation of the model and allocation steps.
Through the model we generate network traffic and evaluate
offered load on every link; successive allocations try to share
the available link bandwidth among the different traffic classes.
If allocation converges, network resources are optimized, and
the BB can set new thresholds on all nodes. When variations on
the incoming traffic are learned at the nodes, the BB is notified
and starts a new allocation procedure.

A. Traffic model.

As noted before, in this kind of environment we need a
traffic model that could yield valuable performance in
describing the behavior of aggregate flows, with a very low
computational effort. Moreover, the aim of the traffic model is
not to describe the dynamics at the IP packet level, but to
extract some parameters, like link bandwidth occupations or
blocking probabilities, with a good approximation,. It is
obvious that for this particular purpose a packet-level
simulator, like NS2 [14], is not the best suitable choice.

Therefore, we have chosen to implement a traffic model
based on fluid approximation, which can efficiently describe
the behavior of aggregate flows, ignoring details of the packet
level or about the state of each connection.

More in particular, our model can be regarded as a “fast”
simulation model, i.e., it is based on a sort of simulation (event
generations and performance measures), and it is quite fast,
because it operates on aggregates, by using a fluid
approximation. Actually, the computational time it requires is
comparable to that of a relatively complex analytical model.

In a DiffServ network we can reasonably consider that the
traffic behavior is dependent on the different QoS level: in fact
it is obvious to think that AF and EF will be used to carry real
time flows, like multimedia streams, whereas BE will be used
primarily for data transport (i.e., web, mail, file sharing or
other). Moreover, in a DiffServ environment, both admission
control and traffic shaping have to be applied to QoS flows.
Therefore, in our model we had to take into account the
significant differences between services with assured QoS level
and the common BE ones.

As we have mentioned in the previous section, EF and AF
flows use a shortest path route from source to destination,
which appears to them as a virtual leased line. For this reason,
from now on we will indicate these two categories as
Connection Oriented (CO) traffic. This hypothesis would be
very realistic if we think that, actually, this kind of IP traffic is
frequently transported with switching technologies that simply
assure the desired QoS level (e.g., MPLS [15]).

An interesting element in our model is the CO traffic
source. In fact, we approximate the incoming process of the
CO flows with a sort of aggregate source. This source is
thought to generate an aggregate of CO flows, which is
composed by all the AF (or EF) connections that traverse the
same path between two network nodes (like FECs in MPLS).
These connections appear directly available at the incoming
Edge Router, which can indifferently represent the access node
for the hosts or a gateway to another AS. CO flows are
generated at each source with exponentially distributed and
independent inter-arrival and service times.

To reduce the computational effort of the traffic model, we
decided to describe both AF and EF flows as CBR traffic. For
EF flows, the constant rate is the maximum assured bandwidth,
whereas it is thought of as the minimum nominal bandwidth,
which must be guaranteed in every condition, for AF flows. If
there are sufficient resources, the AF flows can increase their
rates up to a fixed percentage.

4

Regarding BE traffic, we suppose it to be composed of TCP
connections, characterized by their “elastic” behavior. We have
adopted a very simple model of TCP, which is described and
analyzed in detail in a companion paper [16]. Our goal is not to
model the individual TCP flows, but rather to capture the
aggregate behavior of connections between an ingress-egress
router or source-destination pair for control purpose. Basically,
we take into account that connection durations in a simulation
depend on network load. We believe it is more realistic to
generate the amount of data to be transferred over a connection,
instead of connection durations (sharing the same idea of other
Internet researchers [17]). The effective duration of a
connection is actually determined by the congestion control
mechanisms of TCP and overall network conditions: in our
architecture, the numbers of CO connections of every class
determine the bandwidth left for BE traffic, and the TCP
congestion control algorithm influences the way the remaining
bandwidth is shared among the TCP connections (or, better,
among our aggregate flows). Because of this, we think of each
BE peer as an infinite queue, where session requests arrive;
each session represents a given amount of data to be
transferred. It can come from a network host (as a single user
request) or from a lower-level network (as an aggregate of
traffic). Inter-arrival times between sessions are exponentially
distributed; the size p of each request follows a Pareto
distribution, with shape and location parameters a and D,
respectively. Such arrivals correspond to the amount of data to
be transferred; sessions are served in parallel and the queue
output rate is computed accordingly to network load. Basically,
in order to model the behavior of the aggregate flows of all
peers in sharing the network bandwidth, so as to avoid a
detailed simulation of the TCP characteristics, we suppose the
aggregate flows to distribute according to a max-min fair rule
[16].

To obtain steady and meaningful average values, like BE
link utilizations or CO blocking probabilities from the flow-
level simulation model, the simulation lengths are extracted by
a stabilization criterion, which allows to achieve a measured
mean value of the parameters under study, which can differ
from the statistical mean within a 5% confidence interval, with
a confidence level equal to 95%.

B. Analytical Resource Allocation

As the BB knows the input traffic matrix for each flow
from the single node, by executing a simplified and fast
simulation at the flow level, it can collect data about offered
load, in terms of number of flows trying to cross a given link
(CO) and average usage of BE bandwidth on the link. From
this point on, it begins an independent allocation for each link.

We choose a bandwidth step bw_step, equal to the
minimum admissible rate for CO connections. Then, the
algorithm starts calculating the costs for all possible bandwidth
assignments, which are generated as follows.

CO bandwidth is initially set to zero, then it is increased by
bw_step, until the link bandwidth is reached;

For each of these values, CO bandwidth is shared between
EF and AF in a similar way: the EF threshold is set initially to
zero and the AF threshold to the total CO assigned bandwidth.

All possible assignments are generated by incrementing EF and
decreasing AF thresholds by bw_step.

1) Cost calculation

In this particular environment, CO traffic looks like
traditional circuit switched traffic: there are incoming
connections of a given size (peak rate for EF and mean rate for
AF), competing for a limited resource. This is the so-called
Stochastic Knapsack problem; the blocking probabilities can be
easily calculated with an extended Erlang Loss formula [11].

Let K denote the number of EF rates (for example) and C
the resource units. Connections of the k-th class are
distinguished by their size, bk, their arrival rate, lk, and their
mean duration, 1/mk. Let

†

rk = lk mk and let us denote with nk

the number of active connections of class k and with S the
space of admissible states:

†

S = n Œ IK : b ⋅ n £ C{ } (1)

where IK denotes the K-dimensional set of non-negative
integers, b=(b1,b2,…bK) and n=(n1,n2,…nK).

By defining Sk as the subset of states in which the knapsack
admits an arriving class-k object, that is

†

Sk = n Œ S : b ⋅ n £ C - bk{ } (2)

the blocking probability for a class-k connection is:

†

Bk = 1-
r

n j

j=1

K
’ / nj!nŒSk

Â
r

n j

j=1

K
’ / nj!nŒSÂ

(3)

The blocking probability is computed separately for EF and
AF, since each category has its own reserved bandwidth and
incoming traffic, independently of the others.

The link cost is derived from the blocking probabilities of
the different rate classes:

†

JCO = max
k

Bk{ } (4)

and it holds for both EF and AF.

For BE traffic, we have a single aggregate: it is difficult to
say if it has enough space or not, because TCP aims at
occupying all the available bandwidth. A possibility consists of
deciding that the bandwidth available to BE on a link can be
considered sufficient if its average utilization by the BE traffic
is within a given threshold. To fix this kind of threshold
analytically is a very complex task; instead, we have chosen to
run several NS2 simulations to extract information about the
average behavior of an individual connection, with respect to

5

different values of aggregate utilization ratio. In Figs. 1 and 2,
we report two of the several results obtained about the
individual TCP connection’s performance; for both cases, we
have a quick deterioration of the average rate per connection as
the aggregate rate approaches 80% of the bandwidth.

Thus, we can choose to impose 80% as maximum threshold
for the utilization ratio.

Fig. 1. Average rate per connection, with respect to different values of
aggregate utilization of a single link, whose bandwidth is 10 Mbps.

Fig. 2. Average rate per connection, with respect to different values of
aggregate utilization of a single link, whose bandwidth is 100 Mbps.

To compute the utilization, let q(c) be the probability to
have c resources occupied in the system by EF and AF
connections (which can be calculated from the knapsack
model, given EF and AF thresholds); the average quantity
UTIL of occupied resources results:

†

UTIL = cq(c) (5)

Thus, for a total link bandwidth

†

LINKBW , the mean
available bandwidth for BE is:

†

AVLBBE = LINKBW -UTILEF -UTILAF (6)

The BB keeps track of the BE mean occupied bandwidth on
the link, OCCBW, during the simulation, so we now are able to
define the utilization ratio UT as:

BEAVLB
OCCBW

UT = (7)

Starting from this, we expect that connections on the link
are given enough bandwidth if this ratio is less than a given
value d=0.8.

2) Optimization function
Several functions can be selected to optimize the bandwidth

sharing, depending on which goals one is pursuing. Our aim is
to equalize the costs of the traffic classes, so that we can vary
the system’s fairness simply by changing some weight
parameters.

However, we want to give some kind of priority to AF and
EF traffic classes, with respect to the BE one. Thus, we have
chosen a particular equalization cost function J, which gives us
the possibility to smoothly impose two different constraints:
the first one on the maximum blocking probability

†

JCO , and
the second one on the BE aggregate utilization ratio.

To take these constraints into account we have defined a
specific BE cost function , namely

†

JBE =
tan{a[UT -d +

p
2

]}

p ⋅ tanh(UT ⋅ b)
(8)

where d is the desired utilization ratio value and a and b are
two shape parameters; moreover, we have introduced a penalty
function for the CO traffic, that is

†

˜ J co =
arctan{e ⋅[JCO -j]} - arctan[-ej]

arctan{e[1-j]} - arctan[-ej]
(9)

where e is a shape parameter and j is the maximum acceptable
blocking probability.

With these new cost components we are now ready to write
the final equalization function as:

†

JTOT = JBE + JCO + ˜ J CO - JBE
˜ J CO (10)

so that the equalization of costs results in minimizing

†

min
TEF ,TAF

JTOT{ } (11)

with respect to TEF and TAF, which are the thresholds for EF
and AF traffic, respectively.

A graph of the chosen cost function (10) is reported in Fig.
3, where d=0.77, a=50, b=0.7, e=500 and j=0.05. As it can
be seen, this function could be roughly divided into three
different regions, which are smoothly interconnected:

6

• the first region corresponds to values of UT and

†

JCO that are both below the thresholds; namely,
both constraints are satisfied, and the associated
global cost is very low, as the link is not
congested;

• the second region corresponds to an excessive
value of UT by BE traffic, while the blocking
probabilities remain below their threshold: in this
case, the cost is quite high, as there are insufficient
resources on the link to carry both BE and CO
traffic efficiently, and the allocator decides to
penalize BE to respect the constraint on CO
blocking probabilities;

• finally, the third region corresponds to the case
where the CO constraint is not respected: the cost
equalization function takes on higher values
because, in heavy congestion conditions, network
optimization attempts to respect the CO constraint
first, and then, if possible, to protect the BE traffic.

Fig. 3. Graph of the cost equalization function used in link optimization.

Obviously, the optimization problem is not defined for all
values of UT and

†

JCO , but only in a limited domain, which
depends on both BE and CO traffic load on the considered link,
with fixed bandwidth. Since the reserved bandwidths are
calculated with a minimum granularity equal to the lowest
admissible rate for CO flows, the domain of this problem is
also discrete. As an example, Fig. 4 reports one of the
computed domains, which was obtained by varying all the
possible reserved bandwidth thresholds for AF and EF flows,

under fixed link capacity and traffic load, and by calculating
the resulting UT and

†

JCO values.

Fig. 4. Example of a domain for the link resource allocation problem.

 IV. ALLOCATION RESULTS

In this section, we report and comment some of the results
obtained about the performance of the resource allocator. We
are going to illustrate first the validation tests for our dynamic
allocation mechanism in a DiffServ environment and, then, to
analyze the performance. Some preliminary results were
already shown in [18].

As a first goal, to understand whether, in order to calculate
a correct new allocation of resources, the BB receives useful
data on the real state of all the network links, we start analyzing
how the fluid model simulator works. For this purpose, we
compare our flow level simulation model with the packet level
Network Simulator 2 (NS2).

As first test, we have used the simple network in Fig 5,
where the bandwidth for every link is 100 Mbps, except for L3
and L6, which are the bottleneck links of the network, and have
50 Mbps of bandwidth. Table 1 contains the mean offered load
values of all the aggregate flows used in this test, and Table 2
reports the assigned bandwidth values.

Some basic parameter values are kept constant throughout
all tests in the paper: the mean lifetime of EF connections is
fixed to 200 s, the one of AF connections to 800 s, and the
mean burst size of BE traffic is 0.122 MBytes. With the

network topology of Fig. 5, we compare
the results of the fluid model to the ones
of NS2, first for a Complete Partitioning
(CP) policy, utilizing the link bandwidth
allocation in Table 2, and then under a
Complete Sharing (CS) policy.

Flow
Tx

Node
Rx

Node

Offered
Load

[Mbps]

l
[conn./s]

m

Average
Burst

Length
[MBytes]

Class
Rate

[Mbps]

EF1 0 5 33 0.0825 0.005 - 2
EF2 1 6 17 0.085 0.005 - 1
AF0 0 6 33 0.04125 0.00125 - 1
AF1 1 6 17 0.010625 0.00125 - 2
BE1 2 5 27 27 - 0.122 -
BE2 4 6 13 13 - 0.122 -
BE3 1 6 10 10 - 0.122 -

Table 1. parameters of the flows used in the first validation test.

7

Link
EF reserved
bandwidth

[Mbps]

AF
reserved

bandwidth
[Mbps]

Unreserved
bandwidth

[Mbps]

L1 48 44 8
L2 44 39 17
L3 0 45 5
L4 0 0 100
L5 0 0 100
L6 23 26 1
L7 26 30 4
L8 0 0 100

Table 2. Reserved bandwidths in the links of the network in Fig. 5 during the
first CP test.

Fig. 5. The first studied network topology.

Fig. 6. Bandwidth occupation on L2 of the EF0 aggregate flow, with reference
to Fig. 5, in the CP validation test.

Fig. 7. Bandwidth occupation on L3 of the AF1 aggregate flow, with
reference to Fig. 5, in the CP validation test.

Fig. 8. Bandwidth occupation on L2 of the BE0 aggregate flow, with
reference to Fig. 5, in the CP validation test.

Some results of the comparison between NS2 and the fluid
simulator are reported in Figs 6-8. These figures show the
bandwidth occupation over time, whereas Fig. 9 plots the
blocking probability for EF0, calculated in both the fluid model
and NS2, by using the same traffic matrix for aggregate flows.
It can be observed that, for CO flows, the fluid simulator yields
results very close to the NS2 ones. As regards BE traffic, our
model and NS2 tend to agree on longer time scales: the model,
designed to have a small computational effort, does not
consider the behavior of each individual TCP connection, and
works on the mean of all aggregate flows; as such, it cannot
match exactly the real TCP dynamics.

 Nevertheless, the application of the fluid model in the
allocation mechanism is not aimed at understanding and
predicting the detailed traffic dynamics, but rather at extracting
some mean values, like the average bandwidth occupation on
each network link or the average blocking probabilities for the
CO aggregate flows. In this respect, by analyzing the results
obtained in this environment, we can reasonably conclude that
the fluid models provide excellent performance.

8

Fig. 9. Blocking probability in percentage of aggregate flow EF0 for both
fluid model and NS2 during the CP validation test.

As regards the CS policy, we report some results similar to
the previous ones: we used the network topology in Fig. 5 and
the traffic matrix reported in Table 1. As with the CP policy,
we obtained satisfactory performance with the fluid model:
Figs 10-13 show the comparison between the throughputs of
some aggregate flows calculated in NS2 and the ones
corresponding to the fluid model.

Fig. 10. Bandwidth occupation on L6 of the EF1 aggregate flow, with
reference to Fig. 5, in the CS validation test.

Fig. 11. Bandwidth occupation on L2 of the AF0 aggregate flow, with
reference to Fig. 5, in the CS validation test.

Fig. 12. Bandwidth occupation on L6 of the AF1 aggregate flow, with
reference to Fig. 5, in the CS validation test.

Fig. 13. Bandwidth occupation on L2 of the BE0 aggregate flow, with
reference to Fig. 5, in the CS validation test.

By analyzing the performance of the fluid model in this
kind of test, we can reasonably conclude that it correctly
describes the average performance of both CO and BE traffic.
Therefore, it will be used in the following to test the allocator’s
performance.

In the second test session we have verified the invariance of
the allocation results, with respect to different initial network
configurations. Thus, we have used the network topology in
Fig. 5, and we have executed some allocations, starting with
different configurations (21) of reserved bandwidth in all the
network links. The initial conditions, used in each of the 21
tests, are reported in Table 3. From the resulting link
bandwidth thresholds reported in Table 4, we can clearly
conclude that the new optimal network allocation does not
depend on the previous network configuration, but only on the
traffic matrix.

9

Link 1 Link 2 Link 3 Link 6 Link 7
EF AF EF AF EF AF EF AF EF AF

Sim 1 0 0 0 0 0 0 0 0 0 0
Sim 2 0 20 0 20 0 10 0 10 0 20
Sim 3 0 40 0 40 0 20 0 20 0 40
Sim 4 0 60 0 60 0 30 0 30 0 60
Sim 5 0 80 0 80 0 40 0 20 0 20
Sim 6 0 100 0 100 0 50 0 50 0 100
Sim 7 20 0 20 0 10 0 10 0 20 0
Sim 8 20 20 20 20 10 10 10 10 20 20
Sim 9 20 40 20 40 10 20 10 20 20 40
Sim 10 20 60 20 60 10 30 10 30 20 60
Sim 11 20 80 20 80 10 40 10 40 20 80
Sim 12 40 0 40 0 20 0 20 0 40 0
Sim 13 40 20 40 20 20 10 20 10 40 20
Sim 14 40 40 40 40 20 20 20 20 40 40
Sim 15 40 60 40 60 20 30 20 30 40 60
Sim 16 60 0 60 0 30 0 30 0 60 0
Sim 17 60 20 60 20 30 10 30 10 60 20
Sim 18 60 40 60 40 30 20 30 20 60 40
Sim 19 80 0 80 0 40 0 40 0 80 0
Sim 20 80 20 80 20 40 10 40 10 80 20
Sim 21 100 0 100 0 50 0 50 0 100 0

Table 3. Initial network configurations for the invariance test. Note that all the
threshold values are in Mbps.

Link1 Link2 Link3 Link6 Link7
EF AF EF AF EF AF EF AF EF AF

 Sim 1 50 42 44 39 0 45 23 26 24 30
Sim 2 48 42 44 39 0 45 23 27 24 28
Sim 3 48 42 44 40 0 46 23 27 24 28
Sim 4 48 42 44 40 0 46 23 27 24 28
Sim 5 48 42 44 40 0 46 23 27 24 30
Sim 6 48 42 44 39 0 46 23 27 24 30
Sim 7 48 42 44 40 0 45 22 28 24 30
Sim 8 48 42 44 39 0 45 22 27 23 28
Sim 9 50 42 44 39 0 46 22 26 24 28
Sim 10 48 42 44 39 0 45 22 26 24 28
Sim 11 48 42 44 39 0 45 22 26 24 28
Sim 12 48 42 44 39 0 44 22 28 24 28
Sim 13 48 42 44 39 0 45 22 27 23 28
Sim 14 48 42 44 39 0 46 22 26 24 28
Sim 15 48 42 44 39 0 44 22 28 24 28
Sim 16 48 42 44 40 0 45 22 28 24 30
Sim 17 48 42 44 40 0 46 23 27 24 28
Sim 18 48 42 44 39 0 45 22 27 23 28
Sim 19 48 42 44 40 0 45 22 28 24 30
Sim 20 48 42 44 39 0 46 22 26 24 28
Sim 21 48 42 44 39 0 45 22 27 23 28

Table 4. Optimal network configurations calculated by the allocator in the
invariance test. Note that all the threshold values are in Mbps.

Finally, we report two of the numerous test sessions aimed
at determining the resource allocator’s performance, obtained
with different networks. For each network analyzed, we have
chosen to study how the allocator’s efficiency changes

according to the traffic load. Moreover, we have decided to
compare the results achieved to those of a CS based network:
with this kind of policy we expect to obtain (with respect to a
CP network with the allocation mechanism) no protection for
BE traffic but, especially for high network loads, better
(overall) CO performance, because in this case the only
thresholds for the CAC are the link bandwidths.

In this context, as a first test network, we utilized once
again the one in Fig. 5, which is not too complex and allows us
understand easily how the mechanism works: in fact, this
simple network presents only three bottleneck links (with
reference to Fig. 5, L2, L3 and L6), shared by the aggregate
flows in Table 5. Thus, we present the results of 13 allocations,
which were obtained under different traffic loads that are
reported in Table 5. Tables 6 and 7 show the achieved link
thresholds for AF and EF traffic, respectively.

The average throughputs of all aggregate flows used in this
test session are reported in Figs. 14-20, while the blocking
probabilities for EF and AF flows are in Figs. 21-24.

EF 0 EF 1 AF 0 AF 1 BE 0 BE 1 BE 2
Sim 1 28 14 28 15 24 11.5 11.5
Sim 2 29 15 29 15 24 11.5 11.5
Sim 3 30 16 30 15 24 11.5 11.5
Sim 4 31 17 31 15 24 11.5 11.5
Sim 5 32 18 32 15 24 11.5 11.5
Sim 6 33 19 33 15 24 11.5 11.5
Sim 7 34 20 34 15 24 11.5 11.5
Sim 8 35 21 35 15 24 11.5 11.5
Sim 9 36 22 36 15 24 11.5 11.5
Sim 10 37 23 37 15 24 11.5 11.5
Sim 11 38 24 38 15 24 11.5 11.5
Sim 12 39 25 39 15 24 11.5 11.5
Sim 13 40 26 40 15 24 11.5 11.5

Table 5. Average offered loads (in Mbps) for the aggregate flows in the
performance tests with the network in Fig 5.

Link 1 Link 2 Link 6 Link 7
Sim 1 42 42 21 21
Sim 2 44 44 21 22
Sim 3 44 44 22 23
Sim 4 46 46 23 24
Sim 5 46 46 24 26
Sim 6 48 46 25 27
Sim 7 48 46 26 28
Sim 8 50 46 26 29
Sim 9 50 50 27 31
Sim 10 52 52 28 32
Sim 11 54 54 28 32
Sim 12 52 52 28 34
Sim 13 52 52 28 35

Table 6. Resource thresholds (in Mbps) allocated for EF traffic in the links of
the network of Fig 5 during the performance tests. Note that the links not
shown have no reserved resources.

10

Link 1 Link 2 Link 3 Link 6 Link 7
Sim 1 36 36 36 26 26
Sim 2 38 38 38 24 28
Sim 3 39 39 39 24 26
Sim 4 39 39 39 24 28
Sim 5 42 42 41 24 26
Sim 6 42 42 42 24 26
Sim 7 44 41 43 24 26
Sim 8 45 41 45 24 26
Sim 9 46 44 45 22 26
Sim 10 47 47 46 22 26
Sim 11 46 46 47 22 28
Sim 12 47 47 48 22 26
Sim 13 47 47 49 22 26

Tab. 7. Resource thresholds (in Mbps) allocated for AF traffic in the links of
network of Fig R1 during the performance tests. Note that the links not shown
have no reserved resources.

Fig. 14. Bandwidth occupation of EF flows calculated on L2, with reference
to Fig. 5, in the case of allocation and of CS policy.

Fig. 15. Bandwidth occupation of AF flows calculated on L2, with reference
to Fig. 5, in the case of allocation and of CS policy.

Fig. 16. Bandwidth occupation of EF flows calculated on L6, with reference
to Fig. 5, in the case of allocation and of CS policy.

Fig. 17. Bandwidth occupation of AF flows calculated on L6, with reference
to Fig. 5, in the case of allocation and of CS policy.

Fig. 18. Bandwidth occupation of BE traffic in L2, with reference to Fig. 5, in
the case of allocation and of CS policy.

11

Fig. 19. Bandwidth occupation of BE traffic in L6, with reference to Fig. 5, in
the case of allocation and of CS policy.

Fig. 20. Bandwidth occupation of BE traffic in L3, with reference to Fig. 5, in
the case of allocation and of CS policy.

From all these results (Figs. 14-20) we can remark how the
BE aggregates are “protected”, as far as possible, by CO
allocated thresholds, as the network congestion level rises. On
the contrary, we can stress how a CS policy (without BE
protection) could obviously improve the CO performance in
terms of higher average throughputs and lower blocking
probabilities.

Fig. 21. Blocking probabilities for aggregate flow EF0, with allocation and
with CS policy.

Fig. 22. Blocking probabilities for aggregate flow EF1, with allocation and
with CS policy.

Fig. 23. Blocking probabilities for aggregate flow AF0, with allocation and
with CS policy.

Fig. 24. Blocking probabilities for aggregate flow AF1, with allocation and
with CS policy.

To better understand how the allocation decisions are
adaptively extracted from the congestion level of the links, we
show in Figs. 25-27, for each bottleneck link of network in Fig.
5, how the cost of the “locally optimal” link resource
configuration changes according to the increase in network
offered load. To do so, we have reported all the allocations

12

calculated during the test on the cost functions of the link that
better reflects the specific behavior we want to highlight.

In Fig. 25, we can observe how, on bottleneck link L2 in
Fig. 5, the allocator tends to satisfy all the desired constraints,
as long as the network congestion is low; when the traffic load
increases and link resources are no longer sufficient, the
allocator decides to maintain the CO blocking probability
constraint and to sacrifice BE performance, accepting a value
of utilization ratio higher than the desired one. Moreover, the
values of the cost function parameters are d=0.77, a=50,
b=0.7, e=500 and j=0.05, which means that we try to maintain
the CO blocking probability under the 5% and the utilization
ratio for BE under the 77%. On the other hand, Fig. 26
highlights the shift in the optimal configuration during the
increase of the traffic load for link L3: in this case, the
resources remain sufficient to satisfy both the CO constraint
and the BE one, and so all the allocations appear mapped onto
the lower part of the cost function. Finally, as we can analyze
for link L6 in Fig. 27, first, when the traffic load rises slightly,
the allocator has not enough resources to assure the BE ratio
constraint; afterwards, while traffic load continues to increase
further, there are no more resources to satisfy the CO
constraint, as well. Note that in this last case the BE ratio
values of the calculated allocation do not diverge, because BE
traffic continues to use all the reserved bandwidth which the
AF and EF flows do not temporarily utilize.

Fig. 25. Mapping on the cost function profile of the change in resource
allocation on link L2 in Fig. 5, while the traffic load increases.

Fig. 26. Mapping on the cost function profile of the change in resource
allocation on link L3 in Fig. 5, while the traffic load increases.

Fig. 27. Mapping on the cost function profile of the change in resource
allocation on link L6 in Fig. 5, while the traffic load increases.

Finally, we show the results of a second test network, more
complex than the previous one. The network, represented in
Fig. 28, is composed by eleven links and seven nodes. The
bandwidth of all links is fixed to 80 Mbps and the propagation
delay time to 5 ms. In this new test session we used six EF
aggregate flows, five AF and six BE ones, whose parameter are
described in Tables 8 and 9, where we can observe how the
traffic load changes in all the different simulations.

Fig. 28. A second network topology used for the allocator’s performance test.

EF aggregate flows AF aggregate flows BE aggregate flows
Flow

id
Tx

node
Rx

node
Flow

id
Tx

node
Rx

node
Flow

id
Tx

node
Rx

node
0 0 3 0 7 3 0 6 2
1 6 4 1 0 3 1 6 4
2 7 4 2 6 3 2 6 0
3 1 3 3 0 4 3 7 2
4 5 3 4 5 4 4 7 4
5 0 4 5 7 0

Table 8. Flow ID, Tx node and Rx node for each aggregate flow used for the
performance test with the network in Fig. 28.

13

EF
0

EF
1

EF
2

EF
3

EF
4

EF
5

AF
0

AF
1

AF
2

AF
3

AF
4

BE
0

BE
1

BE
2

BE
3

BE
4

BE
5

Sim 0 7 10 8 7 5 8 4 4 5 8 10 8 14 20 10 14 20
Sim 1 8 11 9 8 6 9 5 5 6 9 11 8 14 20 10 14 20
Sim 2 9 12 10 9 7 10 6 6 7 10 12 8 14 20 10 14 20
Sim 3 10 13 11 10 8 11 7 7 8 11 13 8 14 20 10 14 20
Sim 4 11 14 12 11 9 12 8 8 9 12 14 8 14 20 10 14 20
Sim 5 12 15 13 12 10 13 9 9 10 13 15 8 14 20 10 14 20
Sim 6 13 16 14 13 11 14 10 10 11 14 16 8 14 20 10 14 20
Sim 7 14 17 15 14 12 15 11 11 12 15 17 8 14 20 10 14 20
Sim 8 15 18 16 15 13 16 12 12 13 16 18 8 14 20 10 14 20
Sim 9 16 19 17 16 14 17 13 13 14 17 19 8 14 20 10 14 20
Sim10 17 20 18 17 15 18 14 14 15 18 20 8 14 20 10 14 20
Sim11 18 21 19 18 16 19 15 15 16 19 21 8 14 20 10 14 20
Sim12 19 22 20 19 17 20 16 16 17 20 22 8 14 20 10 14 20
Sim13 20 23 21 20 18 21 17 17 18 21 23 8 14 20 10 14 20
Sim14 21 24 22 21 19 22 18 18 19 22 24 8 14 20 10 14 20

Table 9. Offered load, in Mbps, of the aggregate flows in all the simulations
of performance test for the network in Fig. 28.

Fig. 29. Total offered load and sum of the throughputs of all the BE aggregate
flows with allocation and with CS policy during the simulation tests with the
network in Fig. 28.

Fig. 30. Maximum blocking probability value for all the EF flows with
allocation and with CS policy during the simulation tests with the network in
Fig. 28.

Fig. 31. Maximum blocking probability value for all the AF flows with
allocation and with CS policy during the simulation tests with the network in
Fig. 28.

Figs. 29, 30 and 31 report the results obtained with the
network topology in Fig. 28. More in particular, Fig. 29 shows
the total BE offered load and the sum of the throughputs of all
the BE aggregate flows for both the allocation with our
mechanism and the CS policy. Figs. 30 and 31 show the
maximum blocking probability value for EF and AF flows,
still in both allocations with our mechanism and the CS policy.
As we can observe from these results, with considerable
congestion levels the allocation mechanism, limiting the
reserved resources to the CO, assures better performance to
the BE traffic class than the CS policy.

 V. CONCLUSIONS

A multiservice IP network based on the DiffServ paradigm
has been considered, composed by Edge Routers (ER) and
Core Routers (CR), forming a domain that is supervised by a
Bandwidth Broker (BB). The traffic in the network belongs to
three basic categories: Expedited Forwarding (EF), Assured
Forwarding (AF) and Best-Effort (BE). A global strategy for
admission control, bandwidth allocation and routing within the
domain has been introduced and discussed. The aim is to
minimize blocking of the "guaranteed" flows (EF and AF)
within a fixed constraint on the maximum blocking value,
while at the same time providing some resources also to BE
traffic in terms of “utilization ratio”. As the main objective is to
apply the above mentioned control actions on-line, a
computational structure has been devised, which allows a
relatively fast implementation of the overall strategy. In
particular, a mix of analytical and simulation tools is applied
jointly: "locally optimal" bandwidth partitions for the traffic
classes are determined over each link (which set the parameters
of the link schedulers in the CRs, the routing metrics and
admission control thresholds); a "high level" simulation
(involving no packet-level operation) is performed, to

14

determine the per-link traffic flows that would be induced by
the given allocation; then, a new analytical computation is
carried out, followed by a simulation run, until the allocations
do not significantly change. The possible convergence of the
scheme (under a fixed traffic pattern) has been investigated and
the results of its application under different traffic loads has
been studied on a test network. The results show the capability
of the proposed method of controlling the performance of the
network and of maintaining a good level of global efficiency.

REFERENCES

[1] Telco rd ia Techno log ie s , WWW documen t . URL:
http://www.netsizer.com

[2] S. Deering, R. Hinden. RFC 2460: Internet Protocol, Version 6 (IPv6)
S p e c i f i c a t i o n s . A v a i l a b l e o n l i n e : U R L
http://www.ietf.org/rfc/rfc2460.txt. December 1998.

[3] R. Govindan and A. Reddy, An Analysis of Internet Inter-Domain
Topology and Route Stability. Proceedings of the IEEE INFOCOM
1997, Kobe, Japan.

[4] C. Labovitz, A. Ahuja, A. Bose and F. Jahanian. Delayed Internet
Routing Convergence. IEEE/ACM Transactions on Networking, vol. 9,
no. 3, June 2001, pp. 293-306

[5] V. Paxson. End-to-End Routing Behavior in the Internet. IEEE/ACM
Transactions on Networking, Volume 7, no.3, June 1999, pp. 277-292

[6] X. Xiao and L. M. Ni. Internet QoS: A Big Picture. IEEE Network,
March/April 1999, pp. 8-18.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin. RFC 2205:
Resource ReSerVation Protocol – Version 1 Functional Specification.
Available online: URL: http://www.ietf.org/rfc/rfc2205.txt. September
1997.

[8] S. Hergoz. RFC 2750: RSVP Extensions for Policy Control. Available
online: URL http://www.ietf.org/rfc/rfc2750.txt. January 2000.

[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss. RFC
2475: An Architecture for Differentiated Services. Available online:
URL http://www.ietf.org/rfc/rfc2475.txt. December 1998.

[10] J. Heinanen, T. Finland, F. Baker, W. Weiss and J. Wroclawski. RFC
2597: Assured Forwarding PHB Group. Available online: URL:
http://www.ietf.org/rfc/rfc2597.txt. June 1999.

[11] K. W. Ross. Multiservice Loss Models for Broadband
Telecommunication Networks. Springer, 1995.

[12] V. Jacobson, K. Nichols and K. Poduri. RFC 2598: An Expedited
F o r w a r d i n g P H B . A v a i l a b l e o n l i n e : U R L
http://www.ietf.org/rfc/rfc2598.txt. June 1999.

[13] S. Chen, K. Nahrstedt. An Overview of Quality-of-Service Routing for
the Next Generation High-Speed Networks: Problems and Solutions.
IEEE Network, Special Issue on Transmission and Distribution of
Digital Video, Nov./Dec. 1998.

[14] The Network Simulator – ns2. Documentation and source code from the
home page: http://www.isi.edu/nsnam/ns/.

[15] D. Awduche, J. Malcom, J. Agogbua, M. O’Dell, J. McManus. RFC
2702: Requirements for Traffic Engineering Over MPLS. Available
online: URL http://www.ietf.org/rfc/rfc2702.txt. September 1999.

[16] R. Bolla, R. Bruschi, M. Repetto, “A Fluid Model for Aggregate TCP
Connections”, TANGO project report, Madonna di Campiglio, January
2003.

[17] S. Floyd, V. Paxson, “Difficulties in Simulating the Internet”,
IEEE/ACM Trans. Networking, vol. 9, no. 4, 2001.

[18] R. Bolla, F. Davoli, M. Repetto, "A control architecture for Quality of
Service and resource allocation in multiservice IP networks", Proc.
Internat. Workshop on Architectures for Quality of Service in the
Internet (Art-QoS 2003), Warsaw, Poland, March 2003; Lecture Notes
in Computer Science, 2698, Springer-Verlag, Berlin, 2003, pp. 49-63.

