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Abstract— The dynamic-routing problem in a packet-
switching telecommunication network is addressed by a
receding-horizon approach. The nodes of the network must
accomplish the following tasks: i) generating routing deci-
sions to minimize the expected total delay, spent by messages
in the queues at the nodes and on the network links, on
the basis of local information and possibly of some data
received from other nodes, typically the neighboring ones;
ii) computing their routing strategies by measuring local
variables and exchanging a small amount of data with other
nodes. The first task leads to regard the nodes as the coop-
erating decision makers of a team organization. The second
task calls for a computationally distributed algorithm. Such
requirements and the well-known impossibility of solving
team optimal control problems under general conditions
suggest two main approximating assumptions: 1) the team
optimal control problem is stated in a receding-horizon
framework, and 2) each decision maker acting at a node
is assigned a given structure, in which a finite number of
parameters have to be determined, in order to minimize
the cost function (this makes it possible to approximate the
original functional optimization problem by a nonlinear pro-
gramming one). Among the various possible fixed-structure
functions, feed-forward neural networks have been chosen
for their powerful approximation capabilities. The neural
approximation of such team-optimal routing strategies is
computed in a numerical example, and used in network
routing simulations performed by means of ns-2, in order
to show the feasibility and effectiveness of the methodology.

I. INTRODUCTION

Dynamic routing in telecommunication networks may
constitute a formidable task, if the word “dynamic“ is to
be interpreted in the real control theory sense, i.e., a con-
trol system based on the knowledge of the instantaneous
systems state or some collection of observations on the
systems state. In this respect, the transfer mode adopted in
the network and the level of abstraction at which the route
selection is operated can make a big difference in the
practical implementation of the control scheme. Dynamic
routing strategies have been widely investigated and are
indeed applied in circuit-switched telephone networks
(see, e.g., [1], [2], [3], [4], [5], [6], [7], [8] and [9]),
where the state to be considered is related to the available
capacity, the dynamic evolution of the system is consid-
ered at the call level, and relatively simplified searches

make sense (e.g., alternate routing on double-hop paths
if the direct route is congested). Correspondingly, similar
techniques carry out to the ATM networking context [1],
[10], [11], [12], [13] and [14], where routing is effected,
possibly with bandwidth allocation and Call Admission
Control, at the call level, under the constraint that cell-
level Quality of Service (QoS) guarantees are respected.
In another respect, [15], [16], [17], [18], [19] and [20]
consider optimization problems in routing based on flow-
level information, possibly with QoS constraints, even in
the framework of game theory, but without a dynamic
control formulation.

Some basic difficulties of optimal dynamic routing in a
packet-switching environment, based on the status of the
network queues, in the presence of centralized or even de-
centralized information, are evidenced in [21], [22], [23],
[24], [25], [26], [27] and [28]. Actually, two facts become
crucial in a large-scale telecommunication network: 1)
due to communication delays throughout the network, it
may be impossible for a single decision center to gather
and process all the information characterizing the state of
the network (i.e., the lengths of the queues at the nodes
and the amount of information traveling along the links)
and to send the nodes new routing variables. An infor-
mationally decentralized decision structure must then be
sought, in which the nodes act as “the cooperating deci-
sion makers of a team“. This means that each node makes
its decisions on the basis of a “personal“ information set
(i.e., the lengths of the local queues and, possibly, some
data coming from other nodes, typically the neighboring
ones), and that it aims at minimizing a cost function that
is common to all the decision makers of the team (see
[29] for the fundamentals of a team organization). 2) The
place where the routing or control strategies are computed
represents a critical issue. If the characteristics of the
communication network (topology, statistics of input-data
flows, transmission costs, etc.) were constant over time,
the algorithm to design the routing strategies could be
implemented at a single computing center. Instead, if such
characteristics may undergo unpredictable changes, the
availability of a distributed algorithm, enabling the nodes
to “adapt locally“ the routing strategies on the basis of
local information, constitutes an attractive property.
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These points will be addressed in the present paper,
with respect to the problem of optimal dynamic routing
in a store-and-forward packet switching network. The
communication network is modeled as a graph, in which
a set of nodes are connected through a set of links.
The links cannot be overloaded by traffic beyond their
finite capacities. The routing problem consists of directing
packets from the nodes, where they originate, to their
destinations, in such a way as to minimize a given cost
function. Whenever the flows of packets entering the
communication network vary over time, the nodes may
be requested to modify the amount of information to
be sent to their neighbors in real time. In this case, a
dynamic routing problem arises, which is here addressed
by using a receding horizon (RH) control scheme: a
discrete-time model is dealt with and, at any time instant,
a finite horizon (FH) cost is minimized. Only the control
actions relative to the current time instant are applied. The
solution of a sequence of FH optimal control problems
ensures the routing of the traffic flows on the links over
an infinite horizon (IH).

As to the solution of the FH optimal control prob-
lem, we shall consider the results reported in [30] and
[31], where the problem of clearing the queues at the
nodes over a finite horizon was addressed. We define
the dynamic routing problem as a team optimization one,
by introducing a stochastic discrete-time version of the
model presented by Segall in [24] (based on a dynamic
system, in which the queue lengths at the nodes are
the state variables) and reconsidered in [25], by adding
various types of delay (e.g., processing and propagation
delays) to the queueing ones. Segall’s model was ad-
dressed in [26], where a centralized routing algorithm was
studied to minimize the total amount of messages waiting
in the queues of the network nodes. This algorithm,
however, becomes too complex for a practical application
when the number of nodes increases. Another centralized
algorithm, based on Segall’s model, was proposed in
[27]. The method exploits a geometrical interpretation of
the optimal state trajectory, but it does not seem easily
applicable to the case of multiple destinations and of
stochastic inputs to the network.

Computationally distributed routing algorithms were
considered by Sarachik and Özgüner [28] (their algorithm,
however, is valid only for a single destination in the
network) and by Iftar and Davison [25], who presented
a routing controller that guarantees the clearing of the
queues at the nodes in the absence of external inputs,
and keeps the lengths of the queues limited as the
external message arrival rates are bounded by certain
quantities. Our method shares some points with Gallager’s
distributed algorithm [32]. This algorithm addresses a
quasi-static routing context, in which each node constructs
its routing strategy on the basis of periodic updating
information received from the neighboring nodes. Our
team theory approach provides a suitable framework

for the correct statement of an informationally decen-
tralized FH optimization problem, but it enables one
to determine the optimal control strategies analytically
only in few cases, typically under LQG (linear system,
quadratic cost, Gaussian disturbances) assumptions and
for teams characterized by partially nested information
structures (see [33] for general issues related to this
point). This drawback and the need for a computationally
distributed algorithm lead us to approximate the original
team optimal control problem, which is stated in terms of
functional optimization, to a nonlinear programming one.
This is accomplished by assigning fixed-structure control
strategies to each decision maker acting at a network
node, in which a certain number of parameters have to be
optimized (throughout the paper, the terms “routing“ and
“control“ will be considered as synonyms). According to
the time invariance of the adopted model, the approximate
routing functions relative to the first FH control stage are
used as stationary control functions to manage the routing
flows on the infinite horizon.

Various fixed-structure control strategies can be used
(i.e., linear combinations of algebraic or polynomial basis
functions, nonlinear approximators like feed-forward neu-
ral networks, radial basis functions, linear combinations
of sinusoidal functions with variable frequencies and
phases, etc.). How to choose a nonlinear approximator
(which benefits in general from better approximation
capabilities than those of traditional linear ones) for
solving a given functional optimization problem is a most
important but still open issue. We have chosen feed-
forward neural networks and optimized their parameters
by a stochastic approximation algorithm. Such a choice
has been greatly motivated by successful results obtained
in solving highly nonlinear optimal control problems [34],
[35], [36] and [37]. The technique presented in the paper
is the same already employed in [38]; however, the model
has been modified to better reflect the case of packet
network routing, and examples related to this case are
explicitly reported.

MAIN NOTATIONS

C = (N ,L) directed graph with a set
N of N nodes and a set
L of oriented links describ-
ing the communication net-
work.

DMi decision maker acting at
node i ∈ N .

P (i) set of nodes that are up-
stream neighbors of node i.

S (i) set of nodes that are down-
stream neighbors of node i.

N i = N \ {i}
S̃ (i) = S(i)

⋃

{i}
Cij capacity of link (i, j) ∈ L .
pd

ki delay of messages with
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destination d routed from
node k to node i.

bd
ij (t) discrete-time continuous

variable specifying the
length of the queue of
messages at time t, at
node i routed to link (i, j),
whose destination is node
d.

fd
ij (t) discrete-time continuous

variable representing the
traffic flow on link (i, j)
starting from node i in the
time interval [t, t + 1] with
destination d.

fij (t) overall traffic flow on link
(i, j) starting from node i
in the time interval [t, t+1].

rd
i (t) stochastic external input

flow entering node i in the
time interval [t, t + 1] with
destination d.

ud
ij (t) control variable represent-

ing the portion of the traffic
with destination d arriving
at node i in the time inter-
val [t, t + 1] that is routed
from node i to node j ∈
S (i) .

x(t) state vector of the commu-
nication network.

I i(t) personal information vector
of DMi at time t.

ui(t) = γ
it[I i(t)] control function of DMi at

time t.
u∗

i = γ∗
it[I i(t)] optimal control function of

DMi at time t.
ūi(t) = γ̄

i[I i(t), wi(t)] neural approximator (i.e.,
neural network) used by
DMi at time t.

ûi(t) = γ̂
i[I i(t), wi(t)] neural control function of

DMi at time t.
û∗

i (t) = γ̂
i[I i(t), w

∗
i (t)] optimal neural control func-

tion of DMi at time t.

II. A DISCRETE–TIME MODEL FOR THE
COMMUNICATION NETWORK

Let us consider a communication network, C =
(N ,L) , consisting of a connected directed graph with
a set N of N nodes and a set L of oriented links. At
each node i ∈ N , an input flow may enter the network.
Each message has a destination node d ∈ N . Messages
are absorbed as soon as they arrive at their destination
nodes.

Let us denote by S(i) the set of nodes (whose cardi-
nality is |S(i)| ) that are downstream neighbors of node

i, i.e., the set of nodes j for which a directed link (i, j)
exists. At each node i ∈ N there are |S(i)| buffers
(one for each link (i, j), j ∈ S(i) ) in which messages
are stored once they are routed to a node j ∈ S(i).
Therefore, the network has to be “connected”, i.e., each
node of the network must be reachable from each other
node. (This simplifies the models presented later on; some
minor changes allow the number of destination nodes to
be smaller than N .) We also assume that the routing tables
on the nodes are updated (synchronously throughout the
network), at discrete periodic instants 0, 1, . . . , T−1 (the
sampling period is taken to be unity) and let them be the
control variables for our dynamic system.

Up to this point, our model may be considered as
the discrete–time version of the continuous–time one
proposed by Segall in [24] and used in subsequent works.
Following [25], we also take into account the various
possible delays (besides the queueing ones) that may
occur in a real communication network. More specifically,
we denote by pd

ij the total delay in transmitting a message
at node i with destination d (i.e., the time between starting
and ending the transmission of a message), in propagating
it on the link joining node i to node j, and in processing
the message at node j (i.e., in identifying its destination,
inserting it in the queue of messages with destination d,
and performing the routing computations). We assume
that pd

ij can be rounded off to an integer, that is, to
a multiple of the sample period. Then, we have the
following network model:

Dynamics of Model M

bd
ij(t + 1) = bd

ij(t) +

[

rd
i (t) +

∑

k∈P(i)

fd
ki(t − pd

ki − 1)

]

·

·ud
ij(t) − fd

ij(t) ,

(i, j) ∈ L, d ∈ N i, t = 0, 1, 2, . . . (1)

where

fij(t) = g

[

∑

d∈N i

bd
ij(t), Cij

]

4
= min

[

∑

d∈N i

bd
ij(t), Cij

]

,

(i, j) ∈ L, t = 0, 1, 2, . . . (2)

fd
ij(t) = fij(t) ·

bd
ij(t)

∑

d′∈N i

bd′

ij (t)
,

(i, j) ∈ L, d ∈ N i, t = 0, 1, 2, . . . (3)

subject to the following constraints:

ud
ij(t) ≥ 0 , (i, j) ∈ L, d ∈ N i, t = 0, 1, 2, . . . (4)

∑

j∈S(i)

ud
ij(t) = 1 , (i, j) ∈ L, d ∈ N i, t = 0, 1, 2, . . . (5)
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Remark 1. Eqs. (2) indicate that the buffers are served
at the maximum allowable rate. Actually, in the present
formulation we have chosen to forward the buffer contents
at time t in the interval [t, t+1], i.e., the amount of
traffic arriving in the interval [t, t+1] will be served
in the next interval. Eqs. (3) state that, in the case of
saturation, the amount of traffic for each destination is
chosen proportionally to the buffer contents relative to
the destination itself.

Remark 2. Note that x(t)
4
= col [bd

ij(t), (i, j) ∈ L, d ∈
N i; fd

ki(t − τ), i ∈ N , k ∈ P(i), d 6= i, k 6= d, τ =
1, . . . , pd

ki] plays the role of a state vector for model M.
Note also that in (1) we have assumed that the external
inputs rd

i (t) do not incur any processing delay. This
enables us to simplify the notation. Possible delays in
rd
i (t) would not be influenced by the control variables,

hence they would not have to appear in the cost function
defined below.

The model stated above corresponds to a datagram net-
work with multicommodity flows and bifurcated routing
(as happens in minimum average delay routing problems
[39], where packets belonging to the same traffic flow
may be spread over multiple paths toward the destination.
This possibility, which would be desirable to achieve
minimum delay and maximum throughput (at least in
an open queueing network, disregarding flow control),
is most often avoided, in order to preserve the order of
packets in the flow. As a matter of fact, in the presence
of best effort TCP traffic, splitting the flow increases the
reordering burden at the destination and, in the presence
of large differences in delay jitter over multiple paths,
might give rise to retransmissions; at any rate, it should be
certainly avoided in the case of QoS routing of real-time
flows (RTP/UDP). If we want to enforce the requirement
that all packets to the same destination (note that, in a
more general setting, the superscript d might indicate a
given traffic class, i.e., a destination and/or a flow with
specified QoS), we can do so in our model by having
constraint (5) be satisfied by a single ud

ij equal to 1 for
each given destination d. Formally, this can be obtained
through the enforcement of the additional constraint

ud
ij(t) · u

d
il(t) = 0 ,

i ∈ N ; j, l ∈ S(i); j 6= l; d ∈ N i; t = 0, 1, 2, . . .
(6)

Cost function
We want to minimize the IH weighted traffic cost

JIH = lim
T→∞

1

T

T
∑

t=1





∑

(i,j)∈L

∑

d∈N i

αd
ij bd

ij(t)+

+
∑

(i,j)∈L

∑

d∈N i

t−1
∑

τ=max (0,t−pd
ij

)

βd
ij fd

ij(t − τ)



 (7)

where αd
ij and βd

ij , (i, j) ∈ L, d ∈ N i, are positive
weight constants.

Remark 3. The presence of the weight coefficients αd
ij

and βd
ij allows the cost (11) to take into account a

wide variety of practical situations. If such coefficients
are set equal to one, the cost functions give the total
time spent by the messages at the nodes and on the
links of the communication network. The superscripts
d in αd

i and βd
ij may set different priorities on the

messages sent to the various destinations. Finally,
the pairs i, j in the coefficients βd

ij enable one to
associate possible costs that have to be paid to convey
messages through the link joining node i to node j.
This flexibility may be exploited to model explicitly
the case of QoS routing, which is currently the subject
of further investigation. In this respect, we may note
that our approach might be extended also by explicitly
considering, on a shorter decision time scale than the
one we are using for routing, the scheduling of multiple
flows over the link (i,j), in order to satisfy given QoS
requirements (e.g., in a DiffServ or MPLS context).
This possibility would give rise to a joint optimization
problem of QoS routing and scheduling over multiple
time scales, which constitutes a challenging research task.

III. STATEMENT OF THE RECEDING HORIZON
DYNAMIC ROUTING PROBLEM

In our decentralized framework, we suppose that each
DM makes its routing decisions on the basis of a personal
information set I i(t) which includes the lengths of the
local queues and (possibly) some information received
from the other DMs, typcally the neighboring ones. As
an example, let us consider an information structure in
which each node receives the lengths of the queues of
the downstream neighbors with one step of delay. In this
case, the personal information sets take on the form

I i(t) = col
[

bd
ij , d ∈ N i, j ∈ S(i);

bd
jk(t − 1), j ∈ S(i), k ∈ S(j), d ∈ N j ,

]

,

i ∈ N , t = 0, 1, 2, . . . (8)

In general, the control strategies take on the form

ud
ij(t) = γd

ijt

[

I i(t)
]

,

i ∈ N j ∈ S̃(i), d ∈ N i, t = 0, 1, 2, . . . (9)

Let r∞
4
= col [rd

i (t), i ∈ N , d ∈ N i, t = 0, 1, 2, . . .].
We can now state the following

Problem RIH . Find the control strategies (9) that
minimize the expected cost E

x(0),r
∞

(JIH ) .

To face Problem RIH we adopt a receding
horizon technique. To do this, we first have
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to fix a finite control horizon T . Let ri(t)
4
=

col
[

rd
i (t + s), s = 0, 1, . . . , T − 1, d ∈ N i

]

, and
r(t)

4
= col [ri(t), i ∈ N ] . All stochastic variables are

characterized by a given probability density function,
p [ x(t), r(t)] . It is not necessarily required that the
stochastic variables at time t to be mutually independent.
Let us now consider Model M, and define the following
FH cost function

JFH(t) =

T
∑

s=1





∑

(i,j)∈L

∑

d∈N i

αd
ijs bd

ij(t + s)+

∑

(i,j)∈L

∑

d∈N i

s−1
∑

τ=max (0,s−pd
ij

)

βd
ijs fd

ij(t + s − τ)



 ,

t = 0, 1, 2, . . . (10)

where αd
ijs = αd

ij and βd
ijs = βd

ij for s = 0, 1, . . . , T −
1 ; αd

ijT > αd
ij and βd

ijT > βd
ij give rise to a suitable

“final cost”. The presence of this term in the formulation
of the FH optimal control problem results to be particu-
larly useful as we want to use a RH control scheme. In
the centralized case, this fact in pointed out in [36], where
the final cost is essential to prove the stability properties
of the RH regulator.

The cost JFH(t) may also be written in the following
form (which will be handled more easily than expression
(10) in deriving the control strategy approximating the
optimal one)

JFH(t) =

T
∑

s=1

∑

(i,j)∈L

∑

d∈N i

αd
ijs bd

ij(t + s) +

T−1
∑

s=0

∑

(i,j)∈L

∑

d∈N i





min (s+pd
ij ,T )

∑

τ=s+1

βd
ijτ



 fd
ij(t + s) ,

t = 0, 1, 2, . . . (11)

For every time instant t = 0, 1, 2, . . . we can now state
the following finite horizon optimization problem

Problem RFH(t). Find the optimal control strategies

ud∗
ij (t + s) = γd∗

ijs[I i(t + s), t] ,

i ∈ N , j ∈ S̃(i), d ∈ N i, s = 0, 1, . . . , T − 1 (12)

that minimize the expected cost E
x(t),r(t)

[JFH (t)] .

(JFH(t) can be given by the cost (10) or (11)).

Owing to the time invariance of Model M, from here
on, we shall look for FH control strategies that do not
depend on the time instant t, but only on the stage s.
Then we shall drop the index t from equation (12)
and look for a (single) sequence of strategies γd

ijs, s =
0, 1, . . . , T − 1 inside the finite horizon [0, T ]. Moreover,
again stemming from the time–invariance of Model M,
we shall consider t = 0 as a generic time instant to obtain

the strategies (12), and remove the index t from JFH(t)
and from “Problem RFH (t)”: we shall simply write JFH

and “Problem RFH .”
In our RH framework, the control strategies corre-

sponding to the first stage of FH optimal control problem,
will be used as time–invariant routing startegies for each
DM, i.e.

ud
ij(t) = γd∗

ij0[Ii(t)] ,

i ∈ N , j ∈ S̃(i), d ∈ N i, t = 0, 1, 2, . . . (13)

Remark 4. It is worth noting that the decision makers
DMi generate their routing control variables on the basis
of personal information sets I i(t), but they cooperate
on the accomplishment of a common goal (i.e., the
minimization of the same cost). Then, they can be con-
sidered as “the cooperating decision makers of a team”,
as defined in the work by Marschak and Radner on
team theory [29]. Let us consider the FH framework.
As we said previously, we consider DMi as a single
decision maker, placed at node i and generating control
actions at stage s. Equivalently, following the work by
Ho and Chu [33], one may consider T decision makers
DMi(0), . . . , DMi(T − 1). In this context, there would
be a team of N × T decision makers, each generating a
control action at a single temporal stage. In the following,
when convenient and without risk of ambiguity, we shall
adopt the context of Ho and Chu. As is well known, team
optimal control problems can be solved analytically in
very few cases, typically when i) the problem is LQG
and ii) the information structure is partially nested. i.e.,
when any decision maker can reconstruct the information
owned by the decision makers the actions of which influ-
enced its personal information. Problem RFH is neither
LQG nor, in general, characterized by partially nested
information structure. Then, it is even more difficult than
Witsenhausen’s famous counterexample [40] and there is
no hope to solve it analytically.

IV. REDUCTION OF THE FUNCTIONAL TEAM
OPTIMIZATION PROBLEM TO A NONLINEAR

PROGRAMMING PROBLEM

Let us consider a generic time instant t. To simplify
the notation, let us aggregate the functions (12) in the
following vectorial form

ui(s) = γ
is

[

I i(s)
]

, i ∈ N , s = 0, 1, . . . , T − 1 (14)

where γ
is

4
= col

[

γd
ijs, j ∈ S̃(i), d ∈ N i

]

, and similar
definitions hold for ui(t) and, in the following, for γ̂

i and
ûi(t). We search for approximating optimal strategies of
the form

ûi(s) = γ̂
i

[

I i(s), wi(s)
]

, i ∈ N , s = 0, 1, . . . , T − 1 (15)

where the mappings γ̂
i take on fixed structures, and

wi (s) are finite-dimension vectors of parameters to be
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determined so as to minimize the expected value of the
cost (11).

As approximate routing functions, we shall use multi-
layer feedforward neural networks with sigmoidal activa-
tion functions. In the next section, we shall motivate the
choice of such nonlinear approximators and why they are
to be preferred to linear ones.

Let us consider the i-th neural network at stage s.
Clearly, the input variables are the components of the
personal information vector I i(s). Let us denote by
ūd

ij(s), j ∈ S̃(i), d ∈ N i, the components of the output
vector corresponding to the control variables ûd

ij(s), that
are obtained by the following normalization blocks

ûd
ij (s) = ūd

ij (s) /
∑

k∈S(i)

ūd
ik (s) ,

i ∈ N , j ∈ S(i) , d ∈ N i, s = 0, 1, . . . , T − 1 (16)

Such normalization blocks enable us to remove the con-
straints (5). The use of the sigmoidal functions ensures the
fulfilment of the non-negativity constraints (4). Finally,
we remove the constraints (6) by adding to the cost (11)
penalty functions of the form

ρd
i (s) =

1
∑

j∈S(i)

[ûd
ij(s)]

K
− 1

i ∈ N , d ∈ N i, s = 0, 1, . . . , T − 1 (17)

where K ∈ R+
0 . It follows that a new cost function is

obtained:

JFH [w, x(0), r] =
T
∑

s=1

∑

(i,j)∈L

∑

d∈N i

αd
ijs bd

ij(s) +

T−1
∑

s=0

∑

(i,j)∈L

[

∑

d∈N i

(min (s +pd
ij ,T )

∑

τ=s +1

βd
ijτ

)

fd
ij(s)

]

+

T−1
∑

s=0

∑

i∈N

∑

d∈N i

KL ρd
i (s) (18)

where r
4
= r(0), KL is a positive constant, w

4
=

col [wi (s), i ∈ N , s = 0, . . . , T − 1]; wi (s) is the vec-
tor whose components are given by all the weight and
bias coefficients of the neural network of the decision
maker DMi(t) (see the control strategies (15)). Thus the
functional optimization Problem RFH has been reduced
to the unconstrained nonlinear programming

Problem R′
FH . Find the vector w∗ that minimizes the

expected cost E
x (0),r

{JFH [ w, x (0), r ]} .

Remark 4. It is worth noting that we assign a given
structure to the control strategies not to obtain a simplified
suboptimal solution, but just because we are unable to
derive the optimal solution in analytical form.

V. APPROXIMATING PROPERTIES OF NEURAL
CONTROL STRATEGIES

In this section, we shall consider approximate control
strategies, taking the form of linear combinations of
sigmoidal functions, and: i) we show that such approx-
imate routing functions benefit from the approximation
properties stated by the Weierstrass Theorem, with respect
to the optimal ones (in doing this, we shall take into
account that neural control strategies are followed by
the normalization blocks (16)); ii) we try to understand
how complex neural control strategies have to be (i.e.,
how many parameters they have to contain) in order
to approximate the optimal control functions γ∗

is[I i(s)],
which solve Problem RFH , to a given degree of accuracy.

As to point i), arguments of the functions γ∗
is[I i(s)]

must take their values from compact sets. In order to
demonstrate this, we make the following two assump-
tions:

(A1) The vectors x(0) and r(0) take their values from
given compact sets.

(A2) The optimal control functions γ∗
is[I i(s)] are con-

tinuous.
Let us now denote by Ai(s) the set from which the

argument vectors I i(s) of the neural and of the optimal
control strategies γ̂

i and γ∗
is take their values. Under

assumptions (A1) and (A2), it is easy to prove that the
sets Ai(s) are compact, as they are generated iteratively
from compact sets by continuous functions. We define
the functions ni(·)

4
= col [ni

d(·), d ∈ N ] , where ni
d(·)

denotes the mapping induced by the normalization blocks
(16) for a given destination d at node i. In the remaining
part of the present section, for the sake of notational
simplicity and without loss of generality, we consider
some given values of the subscript i and of the temporal
stage s, and we drop such indexes both from the neural
and optimal control strategies, and also from the sets
Ai(s) and the vectors I i(s) and wi(s). Let us assume
that the approximating neural routing functions γ̂ contain
only one hidden layer composed of ν neural units and
that the output layer is composed of linear activation units.
Denote such functions by γ̂(ν)

(I, w) . We can now state
the following proposition (proved in [41]).

Proposition 1. Assume that Problem 2 has an optimal
solution γ∗(I) and let Assumptions (A1) and (A2) be
verified. Then, for every ε ∈ R, ε > 0 , there exist an
integer ν and a weight vector w , (i.e., a neural control
strategy γ̂(ν)

(I, w) ) such that
∥

∥

∥
n
[

γ̂(ν)
(I, w)

]

− γ∗(I)
∥

∥

∥ < ε , ∀ I ∈ A (19)

Like the Weierstrass theorem involving algebraic or
trigonometric polynomials, Property A2 shows that the
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errors due to the introduction of the neural functions
can be arbitrarily small, provided that a sufficiently large
number ν of neural units are used.

In general, results of the type presented in Proposition 1
are very common in approximation theory. More specifi-
cally, Proposition 1 states that the functions implemented
by means of feedforward neural networks are dense in
the space of continuous functions (see, for example, the
results given in [42]); in a sense, this can be considered
as a necessary condition that every approximation scheme
should satisfy. However, such results by themselves are
not very useful from an operational point of view, in that
they do not provide any information about the rate of
convergence of the approximation scheme, that is, about
the rate at which the approximation error decreases as the
number of parameters of the approximating structure (i.e.,
the number of hidden units or, equivalently, of parameters
to be optimized in the neural approximators) increases.

To address this very important issue, we now apply
Barron’s results on neural approximation [43]. To this
end, let us introduce approximating networks that differ
slightly from the ones defined to state Proposition 1. The
new networks are the parallel of µ single-output neural
networks of the type previously described (i.e., containing
a single hidden layer and linear output activation units),
where µ is the dimension of the control vector generated
by the neural routing strategy. Then each network gener-
ates one of the µ components of the control vector. For
every l such that 1 ≤ l ≤ µ , denote by γ̂

(νl)
l (I, wl)

the input-output mapping of the l-th of such networks,
where νl is the number of neural units in the hidden layer
and wl is the weight vector. Then, denote by γ̂(ν)

(I, w)
the input-output mapping of the parallel of the networks
γ̂

(νl)
l (I, wl) , where w

4
= col(wl, l = 1, . . . , µ) and

ν
4
= col(νl, l = 1, . . . , µ) .

In order to characterize the ability of the
functions γ̂

(νl)
l (I, wl) to approximate the functions

γ∗
l (I) , we introduce the integrated square error
∫

A

∣

∣

∣γ∗
l − γ̂

(νl)
l

∣

∣

∣

2

σ(d I) , evaluated on the domain A

(σ is a probability measure). We assume such a domain
to contain the origin. Now we need to make some
smoothness assumptions on the optimal control functions
γ∗

l to be approximated. Following [43], we assume
that such functions are characterized by a bound to the
average of the norm of the frequency vector weighted
by their Fourier transform. However, the functions γ∗

l

have been considered on the domain A , which may
be a subset of the space R

n , where n
4
= dim (I) . If

this occurs, in order to introduce the Fourier transforms,
we need “to extend” the functions γl from domain
A to R

n . Toward this end, we define the functions
γl : R

n → R that coincide with γl(I) on A . Finally,

we define the class of functions

Gcl

4
=

{

γl such that

∫

R
n

|ω| |Γl(ω)| dω ≤ cl

}

(20)
where Γl(ω) is the Fourier transform of γl and cl

is some finite positive constant. Then, we can state the
following (see [41] for the proof)

Proposition 2. Assume that Problem RFH has an optimal
solution γ∗(I) , and further assume that γ∗

l ∈ Gcl
, l =

1, . . . , µ , for some finite positive scalars cl . Then, there
exist positive integers ν̄l, l = 1, . . . , µ , such that for
every probability measure σ and for every νl ≥ ν̄l, l =
1, . . . , µ , there exist weight vectors wl, l = 1, . . . , µ

(i.e., µ neural routing functions γ̂
(νl)
l (I, wl) ) and positive

scalars β and c′l, l = 1, . . . , µ such that
∫

A

∥

∥

∥
n
[

γ̂(ν)
(I, w)

]

− γ∗(I)
∥

∥

∥

2

σ(d I) ≤ β

µ
∑

l=1

c′l
νl

(21)

where c′l = (2rcl)
2 . r is the radius of the smallest closed

sphere (centered in the origin) containing A .

It is worth noting that, in a sense, Proposition 2
specifies quantitatively the content of Proposition 1. More
specifically, with reference to the l–th component γ∗

l (I)
of any control strategy γ∗(I) , the number of parameters
required to achieve an integrated square error of order
O(1/νl) is O(νln) , which grows linearly with n, i.e.,
the dimension of the input vector of the neural network.
It is now reasonable to wonder whether such a property
is peculiar to neural approximators or is shared by tradi-
tional linear approximation schemes (like polynomial and
trigonometric expansions) as well as by other classes of
nonlinear approximators.

As to linear approximators, in [43] it is shown that,
in the class Gcl

, functions to be approximated exist
for which there is no possibility of choosing νl fixed
basis functions such that linear combinations of them can
achieve an integrated square error of lower order than
(1/νl)

2/n . The presence of 2/n instead of 1 in the expo-
nent of 1/νl may then give rise to the phenomenon of the
“curse of dimensionality”. However, such a worst–case
performance by linear approximators does not occur for
functions characterized by a higher degree of smoothness,
like functions with square-integrable partial derivatives of
order up to z (hence they belong to Sobolev spaces), pro-
vided that z is the least integer greater than 1 +

n

2
(see

[44]). Denote such spaces by W
(z)
2 . It can be shown [43]

that, for these functions, the integral
∫

R
n

|ω||F (ω)|d ω is

finite ( F (ω) are their Fourier transforms). Then, if cl is
such that Gcl

⊃ W
(z)
2 (i.e., W

(z)
2 is a proper subset

of Gcl
), neural approximators should behave better than

linear ones in the difference set Gcl
\ W

(z)
2 .

As to nonlinear approximators, approximation proper-
ties similar to the ones of the neural mappings described
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in the paper characterize radial basis functions [45] (for
which the centers and the weighting matrices of the radial
activation functions can be tuned), linear combinations
of trigonometric basis functions [46] (for which the
frequencies and phases are adaptable parameters), sums of
hinge functions [47] with adaptable hinges, and others. It
is worth noting that the aforesaid approximation bound of
order O(1/νl) is achieved under smoothness assumptions
on the functions to be approximated that depend on
the particular approximator considered. For each of such
assumptions there are specific spaces the functions to be
approximated have to belong to.

VI. DISTRIBUTED COMPUTATION OF THE ROUTING
STRATEGIES VIA STOCHASTIC APPROXIMATION

It is well known that gradient descent algorithms with
a constant stepsize are particularly suited for distributed
computation. Actually, generally speaking, we may think
to assign an i-th processor the task of updating the i-th
component of the parameter vector w . Instead, a gradient
algorithm using an optimized stepsize, determined with
some line-search technique, would require a knowledge
of the entire gradient vector (and not a component-
wise knowledge of this vector), thus preventing the use
of a computationally distributed optimization procedure
(for an ample treatment the distributed computation, see
[48]). Indeed, in our communication network, distributed
computation is a very attractive property, as it enables
each decision maker DMi to compute its optimal control
strategy “locally” on the basis of its personal information
vector I i(s). Let us now address Problem R′

FH , and
consider the gradient algorithm

wk+1 = wk − η∇w E
x(0),r

JFH

[

wk, x (0), r
]

,

k = 0, 1, . . . (22)

where η is a fixed stepsize. Unfortunately, in our case, to
compute explicitly the expected cost and then its gradient
as expressed in (22) is a very hard task. This leads us
to compute the “realization” ∇w JFH

[

wk, x (0)
k
, rk

]

instead of the gradient ∇w E
x (0),r

JFH

[

wk, x (0), r
]

.

Then, we consider the updating algorithm

wk+1 = wk − ηk ∇w JFH

[

wk, x (0)
k
, rk
]

,

k = 0, 1, . . . (23)

where the index k now denotes both the steps of the
iterative procedure and the discrete-time instants at which
the vectors x(0)k , rk are generated randomly on the
basis of their probability density function p[x(0), r] .

It is worth noting that the probabilistic algorithm (23)
is strictly related to the concept of “stochastic approxi-
mation”. See, for instance, [49] for a description of this
method as well for its convergence properties. To ensure
(hopefully) the convergence, we take ηk = c1/(c2 +

k) , c1, c2 > 0 , In the simulations performed in Sec-
tion VII, we also added a “momentum” β

(

wk − wk−1
)

to (23), as is usually done in training neural networks (β
is a suitable positive constant).

Let us now derive the components of the gradient
∇w JFH

[

wk, x (0)
k
, rk
]

, i.e., of the partial derivatives

∂ JFH

[

wk, x (0)k, rk
]

/∂wi(s) . From here on, to avoid
complicating the equations excessively, we shall not con-
sider the terms (17). To further simplify the notation, in
the following we shall drop the index k and simply write
JFH instead of JFH

[

wk, x(0)
k
, rk
]

. Let us define the
following variables:

λd
ij(s)

4
=

∂JFH

∂bd
ij (s)

,

i ∈ N , d ∈ N i, s = 0, 1, . . . , T − 1 (24)

We denote by ȳd
iji(t) the input to γ̂

is corresponding to
bd
ij(t), j ∈ S(i) . Similarly, if an input to γ̂

is corresponds
to a state variable bd′

kl(t − pjk), k ∈ S(i), l ∈ S(k) ,
we shall redefine it as ȳd′

kli(t) . Moreover, ȳ
i(s)

4
=

col[ȳd
iji(s), j ∈ S(i); ȳd

kli(s), k ∈ S(i), l ∈ S(k); d ∈
N i].

The partial derivatives ∂ JFH/∂wi(s) are obtained by a
classical backpropagation (BP) procedure, which, at stage
s and for node i, is initialized by the partial derivatives

∂JFH

∂ūd
ij (s)

=
∑

k∈S̃(i)

∂JFH

∂ûd
ik (s)

∂ûd
ik (s)

∂ūd
ij (s)

, j ∈ S(i), d ∈ N i

and allows the computation of ∂JFH/∂ȳ
i(s). We have

∂ûd
ik (t)

∂ūd
ij (t)

=































































∑

l∈S(i)
l6=j

ūd
il (t) /





∑

l∈S(i)

ūd
il (t)





2

,

if k = j ,

− ūd
ij (t) /





∑

l∈S(i)

ūd
il (t)





2

,

if k 6= j .

(25)

Proposition 3.
We have:

∂JFH

∂ûd
ij(s)

= λd
ij(s + 1)

{[

∑

k∈P(i)

fd
ki(s − pd

ki − 1)

]

+ rd
i (s)

}

,

i ∈ N , d ∈ N i, j ∈ S (i), s = 0, 1, . . . , T − 1 . (26)

The variables λd
ij(s) can be computed by means of the

following equations (i ∈ N , d ∈ N i, s = 0, 1, . . . , T −1)
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λd
ij(s) = αd

ijs + λd
ij(s + 1) +

∑

d′∈S(i)

∂fd′

ij (s)

∂bd
ij(s)

∂JFH

∂fd′

ij (s)
+

+
∂JFH

∂ȳd
iji(s)

+ step(T − s − 2) ·
∑

k∈P(i)

∂JFH

∂ȳd
ijk(s + 1)

i ∈ N , d ∈ N i, s = 0, 1, . . . , T − 1 (27)

where step (a) = 1, if a ≥ 0 and step (a) = 0, if a <

0 . The term
∂JFH

fd
ij(s)

in (27) can be obtained as follows:

∂JF H

∂fd
ij (s)

=

(

∑min(s+pd
ij ,T )

τ=s+1 βd
ijτ

)

− λd
ij(s + 1) +

+step[T − (s + pd
ij + 1)] ·

∑

l∈S(i) λd
jl(s + pd

ij + 1) ·

·ûd
jl(s + pd

ij + 1) . (28)

∂fd′

ij (s)

∂bd
ij

(s)
=

d g(b , Cij)
d b

∣

∣

∣

∣

∣

b=
P

d̃∈R(j) bd̃
ij

(s)

·
bd
ij(s)

∑

d̃∈N i

bd̃
ij(s)

+

+g
( bd

ij(s)
∑

d̃∈N i

bd̃
ij(s)

, Cij

)

·

·















































∑

d̃∈N i

d̃6=d

bd̃
ij (s) /





∑

d̃∈N i

bd̃
ij (s)





2

, if d = d′

− bd′

ij (s) /





∑

d̃∈R(j)

bd̃
ij (s)





2

, if d 6= d′

The recursion is initialized by the conditions

λd
ij(T ) = αd

ijT , i ∈ N , d ∈ R(j), j ∈ S(i) (29)

Remark 5. As can be deduced from the mechanism of the
forward pass, if the above computation is performed by a
single processing center, it is not necessary for the compo-
nents of the vectors x(0), r to be independent. Actually,
the realizations x(0)k, rk can be generated by the center
on the basis of the known probability density function
p[x(0), r] . On the contrary, if the random vectors Xi

4
=

col [xi(0), ri], i ∈ N , are mutually independent, each
routing node i can generate “locally” its realization Xk

i at
iteration k of the algorithm, thus determining its personal
control strategy. Clearly, the foregoing holds true for an
off-line computation of the control strategies. For an on-
line computation (or adaptation) of such strategies, the

random variables are generated by the stochastic envi-
ronment, hence no knowledge of the probability density
functions is required.

Let us now remark once again that the off–line solution
of Problem R′

FH , allows the determination of the param-
eter vectors wi(s), i ∈ N , s = 0, 1, . . . , T − 1, i.e., of
the routing strategies γ

is, i ∈ N , s = 0, 1, . . . , T − 1,
but only γ

is, i ∈ N will be retained by each DMi, and
used as IH routing functions.

VII. SIMULATION RESULTS

In this section, some preliminary simulation results
are presented, to show the effectiveness of the proposed
method, on a simple network. The convergence behaviour
of the cost, during the optimazation of the neural net-
works by the gradient descent algorithm (23) has been
investigated in [31], [38], also in relation to the choice of
the constant KL. Let us consider the network depicted in
Fig. 1, where all links have the same capacity of 1 Mbps
and the same propagation delay of 1 ms. The information
structure is described in (8).

There are two destinations, corresponding to nodes 5
and 6. Continuous Bit Rate (CBR) traffic inputs enter
the routing nodes. This is actually a worst case pattern,
as the neural networks have been trained with mutually
independent random variables, uniformly distributed be-
tween a minimum and a maximum value. The CBR flows
are constantly active for all the duration of the simulation,
with the following source-destination pairs (s, d): (1, 5),
(1, 6), (2, 5), (2, 6), (4, 5), (4, 6), (6, 5). Flows (1, 6),
(2, 6) and (4, 6) are kept constant at 300 kbps; flow
(6, 5) is kept constant at 800 kbps. Flows (1, 5), (2, 5)
and (4, 5) are initially generating at a peak rate of 500
kbps, and are increased by 50 kbps at each successive
simulation test. Five different simulation tests have been
performed, by using a UDP/IP protocol stack in NS-2. All
simulations have a duration of 20 seconds. The dynamic
routing strategy is compared with a shortest path adaptive
routing algorithm, whose metric is proportional to the
average queue length of buffer serving the link, estimated
over a time window of 1 second. In all graphics from
Fig. 2 to Fig. 10, a higher performance of the dynamic
routing strategy is evidenced, in terms of both throughput
and delay.

VIII. CONCLUSIONS

The “neural” control strategies described in the paper
exhibit the following basic features:

- The routing decision makers acting at the nodes
generate control actions as the cooperating members
of a team: this meets a very realistic requirement for
large-scale communication networks.

- The IH routing Problem has been solved by means
of a RH technique. The related team functional
FH optimization problem has been reduced to a
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Fig. 1. The network topology used in the test session.
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Fig. 2. Average end to end delay of all the packets carried through
the network during the simulation tests.

nonlinear programming one that can be solved via
a distributed computation scheme. This means that
each decision maker can compute (or adapt) its
“personal” control strategy “locally” on the basis
of a small amount of data, like the lengths of the
node queues and possibly the information messages
received from some other decision makers, typically
the neighboring ones.

- During of the optimization phase, that can be per-
formed off line, t control strategies (one for every
FH stage) are computed for each routing node, but
only the first one is retained by the DMs.
During the routing process, a reduced on-line compu-
tational effort is requested from each decision maker
to compute this stationary control function.

The approximate strategies show a high degree of
adaptivity and can face whatever change in the network,
including link and node failures. Simulation results allow
us to conclude that the proposed method can become a
powerful tool for dynamic routing. Moreover, preliminary
comparisons with adaptive shortest path routing (with
link delay metric), effected under UDP traffic patterns,
by means of ns-2 simulations, show encouraging results,
with respect to the performance gain obtainable by the
dynamic routing strategy. Much work remains to be done
to assess the performance, in the case of elastic TCP
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Fig. 3. Total network throughput versus offered load.
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Fig. 4. Average end to end delay of the packets of the flow from node
1 to node 5.
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Fig. 5. Average end to end delay of the packets of the flow from node
1 to node 6.
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Fig. 6. Average end to end delay of the packets of the flow from node
2 to node 5.
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Fig. 7. Average end to end delay of the packets of the flow from node
2 to node 6.
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Fig. 8. Average end to end delay of the packets of the flow from node
4 to node 5.
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Fig. 9. Average end to end delay of the packets of the flow from node
4 to node 6.
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Fig. 10. Average end to end delay of the packets of the flow from
node 6 to node 5.

traffic, or under a mix of different (real-time and non-
real-time) traffic flows, both in best-effort and in QoS
routing conditions. Further refinement is required also on
the model, by introducing explicitly the presence of finite
buffers and losses, possibly with the inclusion of Active
Queue Management (AQM) techniques.
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