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Abstract— Fluid models of IP networks have been recently
proposed as a way to break the scalability barrier of traditional
discrete state-space models, both simulative (e.g., ns-2) and
analytical (e.g., queues and Markov chains).

Fluid models adopt an abstract deterministic description
of the average network dynamics through a set of ordinary
differential equations that are then solved numerically, obtaining
estimates of the time-dependent network behavior. However, an
important limit of the fluid model approaches presented so far
in the literature is their unnatural representation of scenarios
comprising the short-lived TCP flows that dominate in today’s
Internet.

In this paper we propose a new fluid model approach in
which a different description of the dynamics of traffic sources
is adopted, exploiting partial differential equations. This new
description of the source dynamics allows the natural represen-
tation of short-lived as well as long-lived TCP connections, with
little sacrifice in the scalability of the model. In addition, the
use of partial differential equations permits the description of
distributions, instead of averages, thus providing better accuracy
in the results.

The comparison between the performance estimates obtained
with fluid models and with ns simulations proves the accuracy
of the proposed modeling approach.

I. INTRODUCTION

Traditional approaches to performance evaluation of
telecommunication networks in general, and of packet net-
works in particular (we specifically refer to IP networks in
this paper), have normally relied on attempts to describe as
closely as possible the dynamics of network elements over
a discrete state-space. We shall refer to these approaches as
‘discrete models’. Discrete models are quite a natural choice
in light of the fact that the operations of traffic sources, of
switches, and of protocols, are normally governed by finite-
state machines, whose dynamics determine the IP network per-
formance. However, discrete models, requiring the description
of the dynamics of the different network elements over their
discrete state-spaces (accounting for the dependencies induced
by network control algorithms, by end-to-end protocols, and
by the traffic flowing through several network elements), suffer
from limited scalability, thus allowing only the performance
analysis of rather small networking setups. This is the reason
why only toy topologies are normally considered in IP network
performance studies, and models almost invariably concentrate
on a very limited subset of the network protocol stack.
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Today, IP networks have become extraordinarily large and
complex, and, in order to predict the effects on performance
of new topologies or protocols, scalable modeling approaches
are a must. To obtain scalability, researchers often model one
network element (a protocol layer or a router) with a high
degree of accuracy, whereas the remaining network elements
are either neglected, or modeled in a very coarse manner. This
approach may sometimes produce acceptable results, but many
cases exist where the interaction among network elements
is a focal point for performance issues (for example, in a
satellite IP network, the interaction between TCP and the ARQ
protocol at layer 2 is crucial).

The above comments apply to analytical models as well as
simulation. Indeed, traditional discrete models for simulation
are based on a detailed packet-level description of the network,
and consequently suffer of scaling problems resulting from the
growth of CPU times and memory requirements beyond the
capability of available machines. On the analytical side, the ap-
plication of discrete-state probabilistic models to the analysis
of sizable portions of the Internet appears prohibitive, although
such models (continuous-time or discrete-time Markov chains
and queueing models in particular) have traditionally been the
mathematical tool of choice in the networking field.

Network Calculus [1], [2] is able to cope with full-size
network performance evaluation. It allows an abstract, deter-
ministic, flow-level, worst-case analysis of the network dynam-
ics, thus greatly simplifying the study of complex networking
setups, but up to now has produced rather loose performance
bounds under simplified traffic assumptions.

A new class of semi-analytical models has recently been
introduced in the networking arena, and today appears to be
the most promising approach for scalable and accurate perfor-
mance analysis of large IP networks. This new approach, that
is often called ‘fluid models’, adopts an abstract deterministic
description of the average network dynamics through a set
of differential equations [3], [4], [5], [6], [7], thus neglecting
the short-term, packet-by-packet description of the stochastic
network dynamics. The resulting set of differential equations
is then solved numerically, obtaining estimates of the time-
dependent network behavior.

The most attractive property of fluid models resides in
the fact that their complexity (i.e., the number of differential
equations to be solved) is independent of the number of TCP
flows and of link capacities, when considering traffic scenarios
comprising only long-lived TCP flows (commonly called ‘ele-



phants’). In addition, fluid models have been recently proved
to capture the limiting behavior of TCP elephants in single
bottleneck topologies when the number of TCP flows grows
very large [3], [8], [9], [10].

An important limit of the fluid model approaches presented
so far in the literature is their unnatural representation of
scenarios comprising the short-lived TCP flows (commonly
called ‘mice’) that dominate in today’s Internet.

In this paper we develop a new fluid model approach based
on partial differential equations. This new description of the
source dynamics allows the natural representation of TCP mice
as well as elephants, with no sacrifice in the scalability of the
model. In addition, the use of partial differential equations
permits the description of TCP window distributions, instead
of averages, thus providing better accuracy in the performance
predictions.

The rest of this paper is organized as follows. Section II
overviews the fluid model of IP networks originally proposed
by Misra, Gong and Towsley, and Section III discusses other
previous works in the same area. Section IV describes the
modeling methodology that we propose in this paper, based
on partial differential equations, by first discussing the simplest
version, and then progressively extending it, to cope with
finite window sizes, fast recovery, drop-tail buffers, and TCP
mice. Results are shown along the way, and compared with
performance estimates generated by ns-2 simulations, so as
to prove the accuracy of the proposed fluid model approach.
Finally, Section V concludes the paper.

II. THE MGT FLUID MODEL OF IP NETWORKS

In [5], [6], [7], Misra, Gong and Towsley presented simple
differential equations to describe the behavior of TCP ele-
phants over networks of IP routers adopting a RED (Ran-
dom Early Detection [11]) active queue management (AQM)
scheme. Their approach (that we name MGT) spurred several
research efforts aiming at the application of various kinds of
fluid models to the performance analysis of packet networks.
It is important to note that the equations of the MGT model
heavily rely on the assumptions mentioned above (all TCP
connections are elephants, and all IP routers adopt RED), and
that the extension to mice and drop-tail routers may be not
simple.

Consider a network comprising K router output interfaces,
equipped with FIFO buffers, and interfacing data channels
at rate C (the extension to non-homogeneous data rates is
straightforward). The network is fed by I classes of long-lived
TCP flows; all the elephants within the same class follow the
same route through the network, thus experiencing the same
round-trip time (RTT), and the same average loss probability
(ALP). At time t = 0 all buffers are assumed to be empty.
Buffers drop packets according to their average occupancy, as
dictated by a RED AQM scheme.

A. TCP source evolution equations

Consider the ith class of elephants; the temporal evolution
of the average window of TCP sources in the class, Wi(t), is

described by the following differential equation:

dWi(t)
dt

=
1

Ri(t)
− Wi(t)

2
λi(t) (1)

where Ri(t) is the average RTT for class i, and λi(t) is the
loss indicator rate experienced by TCP flows of class i.

The differential equation is obtained by considering the fact
that elephants can be assumed to always be in congestion
avoidance (CA) mode, so that the window dynamics are
close to AIMD (Additive Increase, Multiplicative Decrease).
The window increase rate in CA mode is approximatively
linear, and corresponds to one packet per RTT. The window
decrease rate is proportional to the rate with which congestion
indications are received by the source, and each congestion
indication implies a reduction of the window by a factor two.

B. Network evolution equations

Qk(t) denotes the (fluid) level of the packet queue in the
kth buffer at time t; the temporal evolution of the queue level
is described by:

dQk(t)
dt

= Ak(t) [1 − pk(t)] − Dk(t)

where Ak(t) represents the fluid arrival rate at the buffer,
Dk(t) the departure rate from the buffer (which equals C,
provided that Qk(t) > 0) and the function pk(t) represents the
instantaneous loss probability at the buffer, which depends on
the RED parameters. An explicit expression for pk(t) is given
in [5] for RED buffers.

If Tk(t) denotes the instantaneous delay of buffer k at time
t, we can write

Tk(t) = Qk(t)/C

If Fk indicates the set of elephants traversing buffer k,
Ai

k(t) and Di
k(t) are respectively the arrival and departure

rates at buffer k referred to elephants in class i, it results:

Ak(t) =
∑
i∈Fk

Ai
k(t) ,

∫ t+Tk(t)

0

Dk(a)da =
∫ t

0

Ak(a)da

∫ t+Tk(t)

0

Di
k(a)da =

∫ t

0

Ai
k(a)da,

which means that the total amount of fluid arrived up to time
t at the buffer leaves the buffer by time t + Tk(t), since the
buffer is FIFO. By differentiating the last equation:

Di
k(t + Tk(t))

(
1 +

dTk(t)
dt

)
= Ai

k(t)

C. Source-network interactions

Consider elephants in class i. Let k(h, i) be the hth buffer
traversed by them along their path Pi of length Li. The RTT
Ri(t) perceived by elephants of class i satisfies the following
expression:

Ri

(
t + gi +

Li∑
h=1

Tk(h,i)(tk(h,i))

)
= gi +

Li∑
h=1

Tk(h,i)(tk(h,i))

(2)



where gi is the total propagation delay1 experienced by
elephants in class i, and tk(h,i) is the time when the fluid
injected at time t by the TCP source reaches the hth buffer
along its path Pi. We have:

tk(h,i) = tk(h−1,i) + Tk(h−1,i)(tk(h−1,i)) (3)

The loss indicator rate is instead given by:

λi (t + Ri(t)) = α
Wi(t)
Ri(t)

pF
i (t) (4)

where Wi(t)/Ri(t) is the instantaneous emission rate of
TCP sources, α is a calibration parameter, and pF

i (t) is the
instantaneous loss probability experienced by elephants in
class i:

pF
i (t) = 1 −

Li∏
h=1

[
1 − pk(h,i)(tk(h,i))

]
Finally:

Ak(t) =
∑

i

∑
q

ri
qkDi

q(t) +
∑

i

ei
k

Wi(t)
Ri(t)

Ni

where ei
k = 1 if buffer k is the first buffer traversed by

elephants of class i, and 0 otherwise; ri
qk is derived by the

routing matrix, being ri
qk = 1 if buffer k immediately follows

buffer q along Pi; Ni is the number of class i active flows.
It can be observed that the MGT fluid model is extremely

simple, requiring just one equation per class of elephants,
thus being capable of scaling to quite large network models.
However, we must also note that the description of TCP mice
with the MGT model is not natural, because (obviously) the
start time of each mouse determines its window dynamics over
time. This aspect is not captured by (1), and one equation
has to be written for each mouse, as in [4]. This means that
the independence of the fluid model complexity with respect
to the number of flows is lost. Moreover, the MGT model,
due to the fact that it only describes the average dynamics,
also has problems in coping with drop-tail buffers. Finally, the
calibration parameter in (4), which is necessary to compensate
for the use of the average window size, instead of the window
size distribution, must be set according to an empirical process.

III. PREVIOUS WORK ON FLUID MODELS

Fluid models have been recently proposed [3], [4], [5],
[6], [7] as a useful approach to estimate the performance
of large IP networks loaded with TCP traffic. In particular,
fluid models were proposed as a viable alternative to packet-
based simulators, since the complexity of fluid models (i.e.,
the number of equations to be solved) is independent of the
number of TCP flows and of link capacities.

To the best of our knowledge, fluid models were first
proposed in [5] to study the interaction between TCP elephants

1Equation (2) comprises the propagation delay gi in a single term, as if it
were concentrated only at the last hop. This is just for the sake of easier
reading, since the inclusion of the propagation delay of each hop would
introduce just a formal modification in the recursive equation of tk(h,i).

and a RED buffer in a packet network consisting of just one
bottleneck link. In [7] the authors have recently extended
their model to consider general multi-bottleneck topologies
comprising RED routers.

As we have already observed, the equations reported in
Section II briefly summarize the fluid model proposed in [7],
which constitute the starting point for our work. This set of
ordinary differential equations must be solved numerically,
using standard discretization techniques.

In [3], [4] an alternative fluid model is proposed to describe
the dynamics of the average window for TCP elephants
traversing a network of drop-tail routers. The behavior of
such a network is pulsing: congestion epochs in which some
buffers are overloaded (and overflow) are interleaved to peri-
ods of time in which no buffer is overloaded, and no loss
is experienced, due to the fact that previous losses forced
TCP sources to reduce their sending rate. In such a setup,
a careful analysis of the average TCP window dynamics at
congestion epochs is necessary, whereas sources can be simply
assumed to increase their rate at constant speed between
congestion epochs. This behavior allows the development of
fluid equations and an efficient methodology to solve them.
Ingenious queueing theory arguments are exploited to evaluate
the loss probability during congestion epochs, and to study
the synchronization effect among sources sharing the same
bottleneck link. Also in this case the complexity of the fluid
model analysis is independent of link capacities and the
number of TCP flows. An extension that allows considering
TCP mice is also proposed in [3], [4]. In this case, since the
dynamics of TCP mice with different size and/or different start
times are different, each mouse must be described with two
differential equations; one representing the average window
evolution, and one describing the workload evolution. As a
consequence, one of the nicest properties of fluid models, the
insensitivity of the complexity with respect to the number of
TCP flows, is lost.

IV. MODELING A LARGE POPULATION OF TCP SOURCES

The class of fluid models that we propose in this paper
differs from previous proposals because, instead of describing
just the evolution of the average window size of TCP sources,
we model the evolution of the window size distribution for
the TCP flow population. This major improvement in the
representation of the TCP sources dynamics gives us the
advantage of a greater model flexibility, which: (i) allows
TCP mice to be described in a way such that the insensitivity
of complexity with respect to the number of TCP flows is
maintained, (ii) permits the modeling of networks in which
AQM routers coexist with drop-tail routers.

In other words, rather than just describing the average TCP
connection behavior, we try to statistically model the dynamics
of the entire population of TCP flows sharing the same
path. This approach leads to systems of partial derivatives
differential equations, and produces more flexible models,
which scale independently of the number of TCP flows.



In this section we first introduce the basic model for the TCP
flow population. This basic model can be extended by adding
several features, which permit a progressively more accurate
description of the behavior of TCP sources. Such extensions
are described one by one for the sake of readability, but they
can be combined at will, to obtain models with the desired
level of accuracy and numerical complexity.

A. Basic TCP sources

To begin, consider a fixed number of TCP elephants. We
use Pi(w, t) to indicate the number2 of elephants of class i
whose window is ≤ w at time t. For the sake of simplicity, we
consider just one class of flows, and omit the index i from all
variables. The source dynamics are described by the following
equation, for w ≥ 1:

∂P (w, t)
∂t

=
∫ 2w

w

λ(α, t)
∂P (α, t)

∂α
dα − 1

R(t)
∂P (w, t)

∂w
(5)

where λ(w, t) is the loss indication rate. A formal derivation
of (5) is given in Appendix A. The intuitive explanation of the
formula is the following. The time evolution of the population
described by P (w, t) is governed by two terms: (i) the integral
accounts for the growth rate of P (w, t) due to sources with
window between w and 2w that experience losses; (ii) the
second term is the decrease rate of P (w, t) due to sources
increasing their window with rate 1/R(t).

The quantity λ(w, t) can be computed by recalling (4):

λ(w, t) =
wpF (t)
R(t)

(6)

in which the current window of the sources that emitted
the lost fluid approximates the window value at which those
sources emitted this fluid. Intuitively, this loss model dis-
tributes the lost fluid over the entire population, proportionally
to the window size. Note that this loss model does not require
any calibration parameter, contrary to the MGT model; indeed,
statistics like the variance of TCP windows impact on network
stationary behavior: the MGT model only evaluates the mean
value of TCP windows, while this model evaluates their
distribution.

B. Accounting for the maximum window size

We now extend the basic model of (5) to account for the
maximum window size of TCP sources, that we denote by
Wmax. It holds:

∂P (w, t)
∂t

=
∫ min(2w,W max)

w

λ(α, t)
∂P (α, t)

∂α
dα+

+ λ(Wmax, t)Pmax(t)u(w − Wmax/2) − 1
R(t)

∂P (w, t)
∂w

(7)

for 1 ≤ w < Wmax, where u(·) is the unit step function, and
Pmax(t) is the number of TCP flows whose window is exactly
equal to Wmax.

2Pi(w, t) is assumed to be a continuous function IR2 → IR due to the fluid
nature of the model

For Pmax(t) we can write :

dPmax(t)
dt

=

=
1

R(t)
lim

w↑W max

∂P (w, t)
∂w

− λ(Wmax, t)Pmax(t) (8)

with the boundary conditions: P (1−, t) = 0 and
limw↑W max P (w, t) + Pmax(t) = N . The derivation of (7)
is very similar to that of (5). The first term in (7) is the
contribution of all TCP sources which experience losses at
window size between w and 2w (Wmax if 2w exceeds it).
The second term of (7) is the contribution of all TCP sources
at maximum window size that experience losses; note that this
contribution exists only for windows greater than Wmax/2.

The growth rate of Pmax(t) is obtained as the limit of
the usual growth rate (∂P (w, t)/∂w)/R(t) of P (w, t). The
decrease rate of Pmax(t) is simply λ(Wmax, t).

C. Experiments with RED

In this subsection we discuss some numerical results refer-
ring to the mathematical model in (7). Before proceeding we
notice that all the results shown in this paper were obtained by
solving numerically the model. For this purpose we applied
standard discretization techniques; in particular, a first-order
finite differences method for the sources equations and a
second-order Runge-Kutta method for the queue equations.

Consider the case of a single bottleneck link topology in
which a gentle version of the RED AQM algorithm (min th =
10, max th = 160, p max = 0.1, w = 0.0001) is imple-
mented, with two classes of 8 TCP elephants saturating the
link capacity (C = 100 Mbps), assuming a propagation delay
equal to 30 ms. We compare the results of three different
experiments, in which the first elephant class (class 1) has
always maximum window size 64, while the other class (class
2) has maximum window size 64, 32 and 24. The packet size
for this and all other experiments in this paper is 10000 bits. In
Fig. 1 we show the window size probability density function
of elephants in class 2 predicted by our model. In Table I we
compare the average window size, the average queue length
and the loss probability for the model and the ns simulator.
Note that for lower Wmax, the average window size of class
2 elephants is smaller; at the same time, the average window
size for class 1 flows increases, so that the average window
size of all the 16 TCP elephants is roughly constant and equal
to 20. A model without window size clipping, like for example
the one in [5], [6], [7], is capable of correctly estimating the
average window size of the 16 elephants, but fails in capturing
the differences among classes with different maximum window
size values.

The results of ns simulations for the same setup, reported
in Table I and in Fig. 2 for comparison, clearly show that the
fluid model is quite accurate.

D. Considering Fast Recovery

Newer versions of TCP (such as NewReno - see RFCs 2001,
2581, 2582) avoid halving the window more than once for



W max Fluid model ns
AQL ALP AWS AQL ALP AWS

24 18.7 0.0037 18.3 18.2 0.0029 18.3
32 19.8 0.0042 19.7 18.9 0.0032 20.2
64 20.2 0.0044 20.2 19.2 0.0034 20.6

TABLE I

MAXIMUM WINDOW SIZE W max AND AVERAGE WINDOW SIZE (AWS)

(IN PACKETS) FOR CLASS 2 FLOWS, AVERAGE QUEUE LENGTH (AQL) (IN

PACKETS) AND AVERAGE LOSS PROBABILITY (ALP) FOR THE

EXPERIMENTS OF SECTION IV-C.
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Fig. 1. Fluid model: average window size distribution for 8 TCP elephants
traversing a single bottleneck link with RED buffer, varying their maximum
window size; these TCP flows compete with 8 other TCP elephants with
maximum window size 64.
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Fig. 2. ns simulator: same as Fig. 1

RTT, even in the case of multiple losses. To model this fact,
we divide the population P (w, t), representing the number of
TCP flows whose congestion window is ≤ w at time t, in two
classes: class L comprises all those sources that experienced
losses during the last RTT, while class O is composed by
remaining sources3 (P (w, t) = PL(w, t) + PO(w, t)).

We can write:

∂PO(w, t)
∂t

= −
∫ w

1

λ(α, t)
∂PO(α, t)

∂α
dα

− 1
R(t)

∂PO(w, t)
∂w

+
1

R(t)
PL(w, t) (9)

3For the sake of simplicity, the equations in this section and in the rest of
the paper do not consider the effect of the maximum window size. However, in
all numerical results that are presented in this paper the effect of the maximum
window size is always accounted for.

∂PL(w, t)
∂t

= +
∫ 2w

1

λ(α, t)
∂PO(α, t)

∂α
dα

− 1
R(t)

PL(w, t) − 1
R(t)

∂PL(w, t)
∂w

(10)

A formal derivation of (9) and (10) is reported in Appendix B.
An intuitive explanation of the two equations can be provided
as follows. In the right hand side of (9), the first two terms
account for the decrease rate of the number of elephants of
class O whose window is ≤ w at time t, due to: (i) sources in
class O experiencing losses and moving to class L, (ii) sources
in class O increasing their window. The third term refers to
the sources moving to class O from class L after experiencing
a RTT without losses. In the right hand side of (10), the first
term accounts for the growth rate of the number of elephants
of class L whose window is ≤ w at time t, due to sources
in class O experiencing losses. The second and third terms
account for the decrease rate due to: (i) sources moving to
class O from class L after a RTT without losses, (ii) sources
in class L increasing their window.

More general fluid equations describing TCP elephants and
accounting for the TCP threshold mechanisms and for time-
outs are reported in Appendix E.

E. Modeling drop-tail buffers

As we have already mentioned, a fluid model for the
description of RED AQM schemes was originally proposed
in [5]. RED matches quite well the fluid modeling approach,
since in RED buffers the loss probability is a smooth function
of the queue length averaged over a rather long time window.
The case of drop-tail buffers is instead much more difficult
to describe with fluid models, since in this case the loss
probability is a discontinuous function of the instantaneous
queue size.

Many studies have shown that the behavior of networks
carrying TCP traffic is pulsing: congestion epochs in which
some buffers are overloaded (and overflow) are interleaved
to periods of time in which traffic is lighter, buffers are not
saturated, and no loss is experienced. Light traffic periods
are the result of losses at the previous congestion epochs,
that force TCP sources to reduce their emission rate. As a
consequence, the loss processes experienced by TCP flows
traversing drop-tail buffers are quite bursty. This burstiness
induces a high degree of correlation (synchronization) among
the dynamics of TCP sources sharing the same buffer. In
addition, during congestion epochs, losses are not evenly
distributed among TCP flows, but are more likely to affect TCP
sources with larger window size. In this context, it is necessary
to distinguish among sources with different instantaneous
window size, while at the same time accounting for the effects
of the TCP fast recovery mechanism, which prevents TCP
sources from halving their window several times within one
round trip time.

The level of detail in the description of the TCP sources
dynamics adopted in this paper allows an easy description of
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Fig. 3. Fluid model and ns simulator: queue size evolution for one bottleneck
link with data rate C = 100 Mbps, propagation delay 30 ms, fed by a drop-
tail buffer with capacity equal to 1000 packets, and traversed by 30 TCP
elephants, with maximum window size 64 packets.

AWS AQL ALP
Fluid model 39 833 0.0013

ns 38.4 831 0.0013

TABLE II

AVERAGE WINDOW SIZE (AWS), AVERAGE QUEUE LENGTH (AQL) AND

AVERAGE LOSS PROBABILITY (ALP) FOR THE SAME SETUP OF FIG. 3

the time-dependent behavior of the packet loss probability:

pk(t) =
max(0, Ak(t) − C)

Ak(t)
1I{Qk(t)=Bk} (11)

that is, the loss probability pk(t) equals (Ak(t) − C)/Ak(t)
(the relative difference between the instantaneous arrival rate
and the service rate) only when the buffer is full, being Bk

the capacity of buffer k, and 1I{·} the indicator function.
A different approach is used in [3] and [4] to describe the

dynamics of the average window size for TCP flows traversing
a network with drop-tail buffers. In those papers, the loss
indicator rate is obtained by applying queueing theory results
which are not “internal” to the fluid model. This approach
is probably difficult to generalize to networks including both
drop-tail and AQM buffers.

F. Experiments with drop-tail buffers

In this subsection we briefly comment some numerical
results obtained with our modeling approach in the case of
drop-tail buffers.

First, we consider the case of a single bottleneck link (with
data rate C = 100 Mbps, propagation delay 30 ms), traversed
by just one class of 30 TCP elephants, with maximum window
size 64 packets; the maximum buffer size is set to 1000. The
curves in Fig. 3 show the queue size evolution over time.
Our model captures the well-known oscillating behavior of
TCP, which was observed in simulation experiments as well
as measurements [12], [13].

The results of ns simulations are reported in Fig. 3 and
Table II for comparison, and again show that the fluid model
is accurate.

The second scenario we consider is a network topology
comprising two links, the first fed by a RED buffer, the second

0

5

10

15

20

25

30

0 10 20 30 40 50

A
ve

ra
ge

 w
in

do
w

 s
iz

e

Time [s]

TCP0
TCP1
TCP2

Fig. 4. Fluid model: window size evolution for three long-lived TCP
flows with interfering UDP traffic.
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fed by a drop-tail buffer4. The links are crossed by five classes
of elephants. Two classes of TCP flows are single-hop (TCP0
crosses the first link, TCP1 crosses the second one), while
the other one (TCP2) crosses both links; the two links are
also crossed by two interfering classes of CBR UDP flows
(UDP3 crosses the RED buffer, UDP4 crosses the drop tail
buffer). UDP3 is on in the time interval [10, 30] s, UDP4 in
the time interval [20, 40] s: when the UDP flows are on, they
consume about 40% of the bandwidth of their link. Fig. 4
shows plots of the window size evolution for the three TCP
flow classes. When UDP3 starts, the window size of the two
TCP flow classes sharing the same link decreases; when also
UDP4 starts, the window size of TCP1 decreases, and again
that of TCP2 goes down, in favor of TCP0. The window size
of TCP0 and TCP2 increases when UDP3 ends, while those
of TCP1 and TCP2 increase when UDP4 ends.

The results of ns simulations for the same setup are reported
in Fig. 5 for comparison, and once more show that the fluid
model is quite accurate (in addition, in Fig. 6 and 7 we overlap
the curves of the model and the ns simulator for the TCP0 and
TCP1 elephants).

These results prove that our model can cope with both
controlled (TCP) and uncontrolled (UDP) long-lived flows,

4It is worth observing that all previous applications of fluid models to
packet networks always considered either RED buffers, or drop-tail buffers,
but the two types of buffers were never mixed, since the fluid models could
not support this feature.
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and is capable of predicting the TCP transient effects due to
the presence of on-off interfering sources.

G. Modeling TCP mice

We now come to the very important issue of modeling TCP
mice, whose dynamics are mostly, if not completely, due to
the slow start algorithm, and in particular to the first slow start
phase that is executed at the start of the TCP connection. For
this reason, in order to model TCP mice, we model the initial
slow start phase up to the first loss or to the first hit of the
maximum window size, and then we assume that flows stay in
congestion avoidance for the rest of the connection lifetime.

Let Ps(w, t, l) be the number of flows in slow start with
window size ≤ w and residual workload ≤ l at time t. Analo-
gously, P (w, t, l) refers to flows in congestion avoidance. We
can write:

∂P (w, t, l)
∂t

= − 1
R(t)

∂P (w, t, l)
∂w

− w

R(t)
∂P (w, t, l)

∂l

∣∣∣∣
l=0

+
w

R(t)
∂P (w, t, l)

∂l
+
∫ 2w

w

λ(α, t)
∂P (α, t, l − 1)

∂α
dα

+
∫ 2w

1

λ(α, t)
∂Ps(α, t, l − 1)

∂α
dα (12)

∂Ps(w, t, l)
∂t

= − w

R(t)
∂Ps(w, t, l)

∂w

− w

R(t)
∂Ps(w, t, l)

∂l

∣∣∣∣
l=0

+
w

R(t)
∂Ps(w, t, l)

∂l

−
∫ w

1

λ(α, t)
∂Ps(α, t, l − 1)

∂α
dα + γ(t, l) (13)

A formal proof of these equations is given in Appendix C.
An intuitive explanation is as follows. In (12), the first two
terms on the right hand side account for the decrease rate of
P (w, t, l) due to: (i) sources increasing their rate (first term),
(ii) sources terminating because of null residual workload
(second term). The last three terms account for the growth
rate of P (w, t, l). The third term takes into account those
sources with previous residual workload slightly greater than
l, assuming at time t a value ≤ l. The fourth term represents
those sources in congestion avoidance with window between
w and 2w and residual workload ≤ l − 1 that experience
a loss. They are added to P (w, t, l) because their window
is halved (and becomes ≤ w) and their residual workload
goes back to l, as the lost unit of fluid must be retransmitted.
Finally, the fifth term represents an increase similar to the
fourth term, applied to sources in slow start: these sources,
with window size between 1 and 2w and residual workload
≤ l−1, experience a loss and consequently move to a state in
which they are in congestion avoidance, their window is ≤ w
and their residual workload goes back to l.

Equation (13) is very similar to (12), since the evolution
of Ps(w, t, l) with respect to the residual workload (second
and third terms) is the same, and the first term differs only
for the fact that the window growth is in this case exponential
rather than linear. Moreover, the fourth term refers to sources
moving into congestion avoidance because of a loss (similarly
to the fifth term of (12)), and the last term accounts for
newly activated TCP mice. Note that the representation of
the TCP window dynamics over the (t, w) space allows us
to distinguish among TCP mice with different instantaneous
window size, thus providing the correct level of detail for the
analysis of this type of TCP flows. Indeed, TCP mice start
in slow-start, with window 1, and then their window evolves
according to (12) and (13).

The model of TCP mice can be simplified by assuming flow
lengths to be exponentially distributed, with average L. Thanks
to the memoryless property of the exponential distribution, we
can write:

∂P (w, t)
∂t

= − 1
R(t)

∂P (w, t)
∂w

− (1 − p̄L(t))
R(t)L

∫ w

1

α
∂P (α, t)

∂α
dα

+
∫ 2w

w

λ(α, t)
∂P (α, t)

∂α
dα +

∫ 2w

1

λ(α, t)
∂Ps(α, t)

∂α
dα

(14)



∂Ps(w, t)
∂t

= − w

R(t)
∂Ps(w, t)

∂w

− (1 − p̄L(t))
R(t)L

∫ w

1

α
∂Ps(α, t)

∂α
dα

−
∫ w

1

λ(α, t)
∂Ps(α, t)

∂α
dα + γ(t) (15)

where p̄L(t) is the average loss probability experienced by the
flow, during its total active period. The formal derivation of the
second term is reported in Appendix D. We can approximate
p̄L(t) by using the same approach proposed in [5], [6] to
evaluate the average loss probability in a RED queue; we
obtain:

∂p̄L(t)
∂t

= − w̄(t)
LR(t)

p̄L(t) +
w̄(t)

LR(t)
pF (t) (16)

being pF (t) the instantaneous loss probability, defined in (4),
and w̄(t) the average window size at time t.

We wish to stress the fact that (14)-(16) provide quite a pow-
erful tool for an efficient representation of TCP mice, since a
wide range of distributions (including those incorporating long
range dependence) can be approximated with a good degree
of accuracy by a mixture of exponential distributions [14].

H. Randomness in fluid models

As we have observed, fluid models provide a determinis-
tic, phenomenological description of the network behavior,
thus departing from the common approaches of attempting a
probabilistic description of the network dynamics over a huge
state space. However, in networking scenarios with only TCP
mice, the pure determinism of fluid models fails to provide
useful information about the buffering phenomena within the
network: if buffers are underloaded, their corresponding fluid
model is constantly empty, whereas if buffers are overloaded,
their corresponding fluid model grows to infinity.

That is, the intrinsic determinism of fluid models does not
allow them to grasp the random fluctuations in the mice arrival
pattern and size which cause buffer occupancies to grow above
zero without diverging.

In order to overcome this limit of fluid models in the
analysis of the performance of TCP mice, we believe that
some randomness has to be introduced within fluid models.
This can be done at several levels.

• The deterministic mice arrival rate γ(t) in (15) can be
replaced by a Poisson counter with average γ(t), thus
making (15) a stochastic partial differential equation.

• The deterministic completion process of TCP connections
can be replaced by an inhomogeneous Poisson process
whose average at time t is represented by the second
term of (14). Note that this term suggests that, due
to retransmissions, the completion time of connections
increases as their loss probability grows.

• Instead of assuming the workload emitted by TCP sources
to be a continuous deterministic fluid process with rate
Wi(t)/Ri(t), it can be taken to be a Poisson point process
(possibly with batch arrivals) with the same rate.

mice elephants bottleneck
AR ACT AWS AQL ALP

(flows/s) (ms) (pck) (pck)

Fluid
model

100 498 48.9 887 0.0006
200 510 37.4 913 0.0014
400 537 12.4 893 0.015

ns
100 508 45.8 806 0.0027
200 512 34.9 806 0.0054
400 750 12.9 926 0.024

TABLE III

ARRIVAL RATES (AR), AVERAGE COMPLETION TIMES (ACT), AVERAGE

WINDOW SIZE (AWS), AVERAGE QUEUE LENGTH (AQL) AND AVERAGE

LOSS PROBABILITIES (ALP) FOR THE EXPERIMENTS OF SUBSECTION IV-I.

Of course, this is only a preliminary attempt to introduce
randomness in fluid models, so as to be able to study the
behavior of TCP mice; we do not claim any optimality of
this approach, and a deeper investigation is needed about the
possible ways of introducing randomness within fluid models
without losing the property of independence of complexity
with respect to the number of flows.

I. Experiments with mice

In this subsection we discuss results for networking scenar-
ios comprising TCP mice. First, we consider a case in which
both mice and elephants coexist. Results refer to a single
bottleneck link fed by a drop-tail buffer. The buffer size is
equal to 1000 packets, the link capacity is C = 100 Mbps,
the propagation delay between the TCP sources and the buffer
is 30 ms. 20 TCP elephants are active, with maximum window
size 64 packets, and coexist with TCP mice, whose length is
geometrically distributed with mean 20 segments. The TCP
mice arrival rate is set equal to 100, 200 and 400 connections/s.
The queue size evolution is similar to that already presented
in Fig. 3. The presence of elephants is crucial in order to
saturate the link bandwidth, because they consume the capacity
that is not used by mice, which are practically uncontrolled.
Indeed, in Table III we can see that the average window size
for elephants decreases when the arrival rate of mice increases.
In the same table, we also report the average completion time
(ACT) of mice flows, obtained from the average number of
active mice with Little’s theorem.

Table III and Fig. 8 also report the results of ns simulations
for the same setup, for comparison: the fluid model is quite
accurate in this case too.

If infinite flows are removed from the scenario, as we
discussed in the previous subsection, fluid models cannot
provide useful information about the network performance.
Consider a single bottleneck link fed by a drop-tail buffer,
with capacity equal to 256 packets. The link capacity C
is 100 Mbps, while the propagation delay between sources
and buffer is 30 ms; there are 3 classes of TCP mice: they
all have geometrically distributed size, 89% with average 10
packets, 10% with average 100, and 1% with average 1000.
The maximum window size is set to 64 packets for all TCP
sources. Experiments with loads equal to 0.6, 0.8 and 0.95
show that the buffer is always empty, while loads over 1.0
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ALP AQL ACT
Poisson 0 13.6 118, 213, 652

batched Poisson 0.0032 39.7 126, 233, 892
ns 0.003 54.2 136, 274, 1097

TABLE IV

AVERAGE LOSS PROBABILITY (ALP), AVERAGE QUEUE LENGTH (AQL)

AND AVERAGE COMPLETION TIMES (ACT) OF THE THREE CLASSES OF

MICE FOR THE SETUP OF SUBSECTION IV-I, HAVING INTRODUCED

RANDOM ELEMENTS.

obviously saturate the buffer (plots are not reported here).
If we introduce randomness in the fluid model, using the

approach described in the previous subsection, we obtain the
results shown in Fig. 9, which refer to load 0.8: the buffer
occupancy distribution still has a peak in 0, but the variance
has increased.

If we use a Poisson process to model the instants in which
packets (or, more precisely, units of fluid) are emitted by TCP
sources, the results generated by the fluid model do not match
well the results obtained with the ns simulator, as can be
observed in Table IV and Fig. 9. However, the performance
predictions obtained with the fluid model become extremely
accurate when the workload emitted by TCP sources is taken
to be a Poisson process with batch arrivals, with batch size
distribution derived from the window size distribution of TCP
mice. This approach derives from recent results about the
close relationship existing between the burstiness of the traffic
generated by mice and their window size [15].

J. Experiments with a real topology

In order to conclude our validation of the fluid models
proposed in this paper, we present some results referring to
a mesh network topology (depicted in Fig. 10), that mimics
the Italian Academic and Research Network (named GARR).
The network backbone comprises 4 core routers connected
by 5 links with rates equal to either 1 Gbps or 2.5 Gbps,
and propagation delay 30 ms. Each core router is connected
to edge routers through 622 Mbps links, whose propagation
delays are comprised between 5 and 25 ms. The total number
of edge routers is 18. In addition, a 2.5 Gbps 100 ms
transoceanic link is connected to one of the four core routers.
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Fig. 10. simulated GARR network topology

255 elephants enter the network through edge routers, and
1350 elephants through the transoceanic link. In addition, 850
mice/s enter through edge routers, and 5400 mice/s through the
transoceanic link. The mice length is taken to be geometrically
distributed with average equal to 20 packets. All the mice
and elephants are uniformly distributed among all the possible
sources and destinations, generating about 350 classes of flows
(for either mice or elephants).

The numerical solution of the network dynamics over a
period of one minute implies the investigation of the dynamics
of about 1.2 millions TCP flows, and requires just few minutes
over a standard 1 GHz PC, thanks to the excellent scalability
properties of the model.

Figs. 11 and 12 report the throughput and completion time
performance for TCP elephants and mice, respectively, in
decreasing order. Both cases of a deterministic fluid model
and of a model with randomness are considered. In this
particular case, the presence of elephants makes the impact of
randomness marginal. However, if we remove the elephants,
as we already saw, the randomness becomes necessary in order
to observe interesting phenomena.

V. CONCLUSIONS

In this paper we have proposed a new fluid model approach
for the investigation of the performance of IP networks loaded
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by TCP mice and elephants (as well as UDP flows). Our
approach exploits partial differential equations, thus permit-
ting the description of distributions, instead of averages, hence
achieving better accuracy in the results with respect to previ-
ously proposed fluid modeling approaches.

The performance estimates obtained with our fluid models
have been compared against ns simulations in the cases in
which the latter are feasible, proving both the accuracy and
the scalability of the proposed modeling approach. In addition,
we applied the proposed fluid modeling approach to a realistic
network, showing that the solution of reasonable size networks
can be obtained with limited computational complexity.

Further work on this topic will include the investigation of
larger networking setups, the optimization of the numerical
solution techniques, as well as a more detailed investigation
of the possible approaches to introduce randomness in the
modeling paradigm, so as to improve the accuracy in the
description of networks where only mice are present.
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APPENDIX

A. Proof of Eq. (5) - basic sources

We wish to estimate the evolution of P (w, t); we define
v(w, t) = ∂P (w, t)/∂w as the probability density of the
window distribution at time t. Consider a small enough ∆t
such that R(t) ≈ R(t + ∆t). Let ∆P− be the number of
sources with window ≤ w at time t, but with window > w at
time t+∆t. All the sources which do not experience any loss
indication during the interval [t, t+∆t) increase their window
with rate 1/R(t). Among these sources, ∆P− includes only
the ones with initial window ≥ w −∆t/R(t), since they will
exceed w by time t + ∆t. If we assume to model (locally)
the loss indication process with a Poisson process with rate
λ(w, t), the probability that no losses are experienced during
∆t is (1 − λ(α, t)∆t + o(∆t)), then:

∆P− =
∫ w

w−∆t/R(t)

(1 − λ(α, t)∆t + o(∆t)) v(α, t)dα

∆P−

∆t
→ 1

R(t)
v(w, t) (17)

Let now ∆P+ be the number of sources with window > w at
time t, but with window ≤ w at time t+∆t. ∆P+ include only
the sources (i) with window in the range (w, 2w − ∆t/R(t)]
at time t, and (ii) receiving a loss indication in the interval
[t, t+∆t). Note that the probability of receiving multiple loss



indications is o(∆t), hence negligible. Hence,

∆P+ =
∫ 2w−∆t/R(t)

w

λ(α, t) ∆t v(α, t)dα + o(∆t)

∆P+

∆t
→
∫ 2w

w

λ(α, t)v(α, t)dα (18)

Since P (w, t + ∆t) = P (w, t) + ∆P+ − ∆P−, we can find
(5):

∂P

∂t
(w, t) = lim

∆t→0

∆P+ − ∆P−

∆t
=

=
∫ 2w

w

λ(α, t)v(α, t)dα − 1
R(t)

v(w, t)

B. Proof of Eq.(9) and (10) - sources with fast recovery
mechanisms

The proof is similar to the previous one. Let vO(w, t) =
∂PO(w, t)/∂w and vL(w, t) = ∂PL(w, t)/∂w. Consider the
sources of class O moving to class L during the interval [t, t+
∆t); among these, ∆P+

OL will have a window ≤ 2w and will
contribute to increase PL(w, t). Analogously to (A):

∆P+
OL =

∫ 2w

0

λ(α, t) ∆t vO(α, t)dα

The number of sources of class L exceeding w by time t+∆t
is, analogously to (A):

∆P−
L =

∫ w

w−∆t/R(t)

(1 − λ(α, t)∆t)vL(α, t)dα (19)

Now consider the population of sources which will leave class
L because an RTT is elapsed. We assume an exponential
distribution of the departure time of each source from class
L, with average R(t). Hence, the number of sources moving
from class L to class O will be: ∆PLO = PL(w, t)∆t/R(t),
by observing that the number of sources that already left class
L by the end of ∆t will be 1 − e∆t/R(t) = ∆t/R(t) +
o(∆t). Now observe that the ∆P−

LO, defined as the number
of sources moving from class L to class O and exceeding
window w, will include sources counted in both ∆PLO and
∆P−

L . These source can be derived by ∆P−
L , since ∆P−

LO =
∆P−

L ∆t/R(t). Now we are able to add all the possible
contributions:

∂PL

∂t
(w, t) = lim

∆t→0

∆P+
OL − ∆P−

L − ∆PLO + ∆P−
LO

∆t
(20)

By recalling (19), we can compute:

1
∆t

(
∆P−

L − ∆P−
LO

)
= ∆P−

L

(
1

∆t
− 1

R(t)

)
=

=
(

1
∆t

− 1
R(t)

)∫ w

w−∆t/R(t)

(1 − λ(α, t)∆t)vL(α, t)dα

whose limit is:

lim
∆t→0

1
∆t

∫ w

w−∆t/R(t)

vL(α, t)dα =
1

R(t)
∂PL

∂w
(w, t)

In other words, ∆P−
LO is negligible with respect to ∆P−

L .
Hence, from (20) we find (10):

∂PL

∂t
(w, t) =

∫ 2w

0

λ(α, t)vO(α, t)dα

− 1
R(t)

PL(w, t) − 1
R(t)

∂PL

∂w
(w, t)

We can now estimate:

∂PO

∂t
(w, t) = lim

∆t→0

∆PLO − ∆P−
LO − ∆P−

O − ∆POL

∆t

where ∆P−
O are the sources in class O exceeding window w

by the time interval ∆t and ∆POL the sources moving from
class O to class L, due to losses. It holds:

lim
∆t→0

∆POL

∆t
= lim

∆t→0

1
∆t

∫ w

0

λ(w, t) ∆t vO(α, t)dα =

=
∫ w

0

λ(α, t)
∂PO

∂α
(α, t)dα

Analogously to ∆P−
L , ∆P−

O = (∂PO(w, t)/∂w)/R(t). It can
be shown that ∆P−

LO is negligible with respect to ∆PLO.
Hence, we can obtain Eq. (9):

∂PO

∂t
(w, t) = −

∫ w

0

λ(α, t)
∂PO

∂α
(α, t)dα

− 1
R(T )

∂PO

∂w
(w, t) +

1
R(T )

PL(w, t)

C. Proofs of Eq. (12) and (13) - sources with finite flows.

The only terms which need a formal proof are the ones
which model the workload evolution. ∆P is the number
of sources which enter P (w, t, l) during a time interval of
size ∆t because their workload has just decreased. ∆P is
given by all the sources with window between 1 and w, and
residual workload between l and l + w∆t/R(t), being w/∆t
the instantaneous emission rate of sources with window w.
Formally,

∆P =
∫ w

α=1

∫ l+w∆t/R(t)

β=l

∂2P

∂α∂β
(α, t, β)dαdβ =

=
∫ l+w∆t/R(t)

β=l

∂P

∂β
(w, t, β)dβ =

= P

(
w, t, l +

w

R(t)
∆t

)
− P (w, t, l)

Finally,

lim
∆t→0

∆P

∆t
=

w

R(t)
∂P

∂l
(w, t, l)

To account for the sources which stop their activity during
the time interval of size ∆t, it is enough to set l = 0.



D. Proofs of Eq. (14) and (15) - sources with finite flows
exponentially distributed.

Regarding (14) and (15), we prove formally only the terms
related to the contribute of the variation of the workload on the
population P (w, t). Consider a time interval of size ∆t and
a source which does not experience any loss with window
w; the probability that this source stops, i.e. its residual life
time is less than ∆t, is equal to 1− exp{−∆tw/(LR(t))} ≈
∆tw/(LR(t)), thanks to the memoryless property. Then, the
contribution of the sources stopping is:

lim
∆t→0

∆P

∆t
=
∫ +∞

α=1

α

LR(t)
∂P

∂α
(α, t)dα

The final contribution is given by multiplying the previous
formula for (1−p̄L(t)) corresponding to the number of sources
not experiencing any losses.

E. Sources with slow start and threshold mechanisms

We report here how an accurate model of sources employing
slow start and threshold mechanisms can be developed within
our modeling framework.

Let P (w, t, s) be the number of flows with window ≤ w and
threshold ≤ s, with s ≥ 1. Whenever a source experiences a
loss signal, it halves its window and sets its threshold equal to
the window. In this model, no memory is kept of the previous
threshold before the experienced loss. We have to discriminate
among three cases, depending on the relation between w and
s. We can derive:

∂P

∂t
(w, t, s) = − 1

R(t)

∫ w

β=1

∂2P

∂w∂β
(w, t, β)dβ

− w

R(t)

∫ s

β=w

∂2P

∂w∂β
(w, t, β)dβ+

+
∫ 2w

α=w

∫
β≥1

λ1/2(α, t)
∂2P

∂α∂β
(α, t, β)dαdβ

+
∫ w

α=1

∫
β≥s

λ1/2(α, t)
∂2P

∂α∂β
(α, t, β)dαdβ

for 1 ≤ w ≤ s (21)
∂P

∂t
(w, t, s) = − 1

R(t)

∫ s

β=1

∂2P

∂w∂β
(w, t, β)dβ

+
∫ w

α=1

∫
β≥s

λ1/2(α, t)
∂2P

∂α∂β
(α, t, β)dαdβ+

+
∫ 2s

α=w

∫ s

β=1

λ1/2(α, t)
∂2P

∂α∂β
(α, t, β)dαdβ

for s < w ≤ 2s (22)

∂P

∂t
(w, t, s) = − 1

R(t)

∫ s

β=1

∂2P

∂w∂β
(w, t, β)dβ

−
∫ w

α=2s

∫ s

β=1

λ1/2(α, t)
∂2P

∂α∂β
(α, t, β)dαdβ+

+
∫ 2s

α=1

∫
β≥s

λ1/2(α, t)
∂2P

∂α∂β
(α, t, β)dαdβ

for w > 2s (23)

∂P

∂t
(1, t, s) = − 1

TTO
P (1, t, s)

+
∫ 2s

α=1

∫
β≥1

λTO(α, t)
∂2P

∂α∂β
(α, t, β)dαdβ

for s ≥ 1 (24)

where TTO is the timeout duration for the TCP sources, that
is taken to be constant.

Equation (21) models the case when w ≤ s. The population
P (w, t, s) is decreased by: (i) the sources in congestion
avoidance, with threshold less than w and decreasing rate
1/R(t) (first term), (ii) the sources in slow start, with thresh-
old between w and s, with decreasing rate w/R(t) (second
term). To understand the meaning of the integrals, note that
(∂2P (w, t, s)/∂w∂s) is the density function of sources with
window w and threshold s. λ1/2(w, t) is the loss rate given
by loss recognition mechanisms (like duplicate acks, etc.) for
sources with window equal to w, whose effect is to halve the
window and set the new value of the threshold. The population
is increased by the sources experiencing the loss signal, in two
cases: (i) when the window is between w and 2w (third term),
(ii) when the window is less than w and the threshold is larger
than s (fourth term). Note that the integral with respect to s
can be solved analytically for all the four terms and then used
in the numerical solver.

Now consider (22), for w between s and 2s. The population
of sources is decreased by all the sources (in congestion
avoidance) with threshold ≤ s (first term). The population is
increased by: (i) sources with window ≤ w and any threshold
≥ s (second term), (ii) sources with window between w and
2s and threshold less than s (third term).

Finally, (23) models the sources with windows ≥ 2s. The
population will be decreased by: (i) sources increasing their
window (first term), or (ii) sources with threshold ≤ s and
window w′ experiencing losses (second term), since their new
threshold will be set equal to s′ = w′/2 > s, which is outside
the considered population. The population will be decreased
only by sources experiencing losses with window ≤ 2s and
threshold greater than s.

The population with sources at window 1 is described by
the boundary equation (24). We assume that the time taken by
sources to grow their unit window decays exponentially with
average TTO; this explains the first term. The second term is
due to sources with window ≤ 2s experiencing a timeout; their
threshold will be set equal to a value ≤ s, independently from
the initial threshold. Indeed, λTO(w, t) is the rate at which
timeouts are experienced; timeouts reset the window to one.
Hence, the total loss rate is λ(w, t) = λ1/2(w, t)+λTO(w, t).

The function λTO, which models the source reaction to
losses, and the occurrence of timeouts, is affected by the
version of TCP. One possible choice is given by the ap-
proximate model proposed in [16] for which: λTO(w, t) =
min(1, 3/w)w/R(t)pF (t).


