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Abstract  -- The behavior of IP based network traffic has been the
subject of several works. In this paper we compare two modeling
approaches and their ability to capture two basic traffic features:
packet size distribution and interarrival times. Data traces have
been measured at the border gateway of the campus network of
the University of Pavia at different times of the day. The two
modeling schemes use respectively well established Hidden
Markov Model (HMM) techniques and a stochastic engine
derived from  chaotic attractors.

 I. 1. INTRODUCTION

As the usage of data networks is rapidly increasing, there is a
growing effort in trying to achieve a better knowledge of both
the aggregate as well as single service characteristics. This in
turn will provide a better ability to model traffic streams, which
is the most basic ability in network operating and planning.

This traditional activity is almost non-existent in today’s
design of the Internet, where users implicitly accept all the ups
and downs of a “best effort” technology. In perspective, Internet
is expected to become the main connecting infrastructure,
enabling a whole variety of applications, and the notion of
“quality of service” (QoS) needs to be included in the Internet
paradigm too. So, a large amount of efforts is currently being
spent to determine suitable performance measurements, access
schemes, and resource assignment procedures, to allow  the
sharing of this infrastructure among general users and privileged
(paying) users, which need not to be trapped in congestions or
suffer from sudden bottlenecks. The evaluation of such schemes
requires the availability of accurate models of the traffic process.

Traditionally, stochastic models (and specifically traffic
models) are often implemented in the form of Markov processes,
as they provide a flexible framework that can be customized to
fit different system properties. They are also attractive since the
statistical behavior of the system can be directly derived from the
model. Their drawback is the definition of the state diagram and
of its transition probabilities to properly describe the target
system. This often leads to large and complex structures with
several parameters to be tuned. Moreover, it has been shown that
packet traffic exhibits long-range dependence (LRD) that cannot
be captured by Markov chains, as they can reproduce the
autocorrelation function only in the initial, fast decaying steps
[1]. Since LRD is related to some physical characteristic of
traffic, several studies have been performed to develop models
that are intrinsically self-similar.

The discovery of LRD characteristics has raised a strong
debate whether or not Markov models, known to be SRD, could
be used to engineer network parameters.

Traffic engineering has then be forced in the last ten years to
take into account the new features of the traffic generated by
interactive services. The first milestones in understanding the
nature of traffic in data networks have been the works by Lealand
et al. [1] who measured arrival rates on an Ethernet, by Beran et
al. [1] characterizing Variable Bit Rate (VBR) video sources and
by Park et al. [3] for WWW traffic. The main result derived by
all these works is the delineation of a novel phenomenon that is
since then referred to as long range correlation (LRD, Long
Range Dependence) or self similarity.

This concept summarizes the high variability of network
performance figures at any time scale of observation and is
strictly related to the notion of fractal or more in general multi-
fractal behavior, although the two concepts are not completely
overlapping [4].

The next step is the effective use of these concepts to
generate models of traffic behavior accurate enough for the novel
network paradigm. Several approaches have been adopted ranging
from use of Fractional Brownian Motion [5] to Heavy Tailed
(HT) and Power-Tailed (PT) Distributions [6],[7], via
superposition of on-off sources [8], Modulated Markov Processes
with HT inter-events distributions and chaotic maps [9][10][11].

Researchers have also pointed out that the self similar
behavior is exhibited both as an aggregate property as well as
due to single streams, and seems to be mostly related to the
interaction between the bursty user behavior with the
segmentation and reassembly procedures intrinsic in the TCP-IP
protocol stack.

For a thorough description of these and other characteristics,
a must is the book by Park and Willinger [12].

It is interesting to notice that despite the overall acceptance
of the notion of self similarity as an intrinsic characteristic of
network traffic, some authors have pointed out that this may not
affect actual performance [13].

Indeed in [14] we too found that a Markov based approach
considering hidden Markov models (HMM) [15] of VBR traces
was able to provide relatively good long-range characteristics and
very good results in a network environment completely
simulated with Network Simulator 2 (NS2). In the same work
we compared a chaos based [16] modeling approach that on the



contrary provided good LRD features with acceptable but
somehow worse result in terms of final delay-loss performances.

These outcomes have led us to start an extensive
measurement campaign conducted at the edge router of the
campus network at the University of Pavia, to investigate the
actual behavior of traffic and to gain insight about the models
properties.

In this paper, we compare the ability of a Markov based
approach with that of a chaotic one in modeling  aggregate
traffic. It is only a preliminary work, since only relatively short
sequences of  aggregate traffic have been taken into account, and
it describes some of the first attempts to tune the chaotic
procedure. Nonetheless, it will be shown that a low
dimensionality Markov model can describe most of the
statistical features of the analyzed sequences, and that the chaotic
models supply appreciable features in terms of long range
statistics.

 II. 2. MODELING APPROACH

Markov models have been applied since the beginning to
describe the behavior of traffic events. We tried to use Hidden
Markov Models (HMM). In this case, there is no more
correspondence between a state and a physical event and the
properties are hidden in the model structure, from which the
name of hidden Markov models.  From a mathematical point of
view, an HMM can be described as a 5-ple, λ=(S,V,A,B,Π),
where S is the set of the states of the system, with cardinality
N; V is the set of observable values (“the alphabet”), with
cardinality  M; A is the state transition probabilities matrix; B is
the observable probabilities matrix, and Π  is the initial state
vector. The model parametrization is commonly performed using
algorithms such as the method of moments or gradient or the
Baum Welch (BW) procedure used in this work.

The BW algorithm is very robust in that it always converges,
but there is no guarantee that it converges to a global maximum:
the optimized parameters may consequently be not the optimal
ones in an absolute sense. Furthermore, there is no guidance in
the best selection of the number of states. For what the
convergence speed is concerned, it is highly influenced by the
size of the alphabet of symbols V.

For the chaotic model, the approach is similar to that used in
[16], which was derived straightforwardly from the experience
gained in simulating error gap series in mobile radio channels
and the attenuation process in satellite links. It stems from the
observation that a chaotic attractor provides a description of a
dynamical system joining a deterministic mechanism to an
unpredictable behavior. This translates in a number of properties,
the most important being the fact that small differences in
sampling times along the trajectory result in completely different
evolutions of sampled series.

The modeling procedure is thoroughly described in [3] and is
based on a weighted sum of components derived from seven
Lorenz strange attractors [9] as in the following formula:

F [ f _i(ki ui )]                               (1)

where:

• f (•) is a polynomial or exponential function: we present
here results obtained with exponentials;  

• the  ui variables are selected  coordinates  or  geometric
distances  sampled on  the attractor trajectories (the x
coordinate in the current case), and  the  ki are suitable
weights;

• index i is ranging from 1 to 7;

• Weights and sampling distances are optimized to match
the characteristics of the target sequence;

• F(•) is a probability shaping function, used to match the
distribution of the sample amplitudes derived from (1)
to the  target  time  series.   This function is obtained,
after some preliminary  sample  generation  runs  of  the
model,  by means  of  an inversion  procedure  for  the
cumulative probability function described in [16]. The
whole procedure has been found to result in a very good
correspondence with the target in all cases.

Note that we are not attempting to describe any physical
characteristic of the underlying system. To optimize the
parameters in (1), various cost functions have been implemented,
tailored to the actual problem: in the current case, emphasis was
done to medium term moving correlations, short term moving
covariances and histograms, and to mean differences, averaged
over the sequence length, among samples taken at medium term
distances, i.e., 20, 100 and 1000 samples.

 III. 3. MEASUREMENTS SET UP AND RESULTS

The campus network at the University of Pavia comprises
several fast Ethernet branches connected by switches to a single
gateway that routes the outgoing traffic to the backbone national
infrastructure. For a complete network plan see [10]. Our
monitoring station running tcpdump was inserted just prior the
gateway so that it could monitor all traffic over the network. The
analysis has been performed at different times of the day and the
large amount of data has been filtered to extract data subsets
relative to different parameters at the aggregate level. Work is in
progress to classify the data according to protocol and service,
and to identify specific performance measures for a connection
carrying H323 service between the campus in Pavia and a remote
campus in Mantova: the two premises are about 100 Km apart
and are connected via a 2Mb HDSL link. Among all the possible
traffic characteristics, our work has been focused on two
parameters: packet size and packet interarrival time. The two
modeling approaches presented in the previous section have been
customized as follows:

• HMM: a number of states from 2 to 10 has been used.
Since the results were not greatly improved for larger
numbers of states this has been considered to be the
optimal number. The dynamic of the data sets needs also
to be discretized for the Baum Welch algorithm to
converge in reasonable time. The presented results are for
a number of symbols in the alphabet equal to 50. With
these numbers, a sequence of about 106 events is
processed in a few hours on a 1.5 GHz PIV computer.



• CHAOS: the optimization procedure of the generator is
currently based on the experience gained working on
radio channels, mainly with the Nelder and Mead
simplex procedure [19]. Consequently the optimization
procedure is not effective in avoiding to be trapped in
local minima, and the quality of the results of any
optimization  run has to be carefully evaluated.

Apparently, for traffic sequences Lorenz attractors lead to
results better than the Duffing one, and five attractors instead of
seven in the sum (1) seem to provide results somewhat similar:
to determine the  minimum sufficient number of attractor
remains an open issue.  Probably, when suitable or near suitable
numbers of attractors are imposed, the optimization procedure is
more effective with the lower numbers than with the higher.  We
program to undertake experiments with tabu search procedures to
compare the results, as for error gap series in [16].

The lengths of the target and HMM sequences are of the order
of 500,000 samples; the lengths of the chaotic sequences are of
the order of 50,000 samples. The optimization procedure of
these requires CPU times comparable to HMM sequences, but
some care in manipulating optimization weights. The sample
dimensions are normalized for all sequences, to have maximum
values of about 1,500 units.

1) Packet sizes, aggregate level.
In Figure 1. we compare to the target the results obtained for

moving autocorrelation functions computed over intervals of
2000 samples and averaged for two chaotic and one HMM
sequences. As seen, the results are very good, as are for the
cumulative distributions (not reported).  As expected, notable
differences are found in Figure 2. where the variation coefficients
are shown: the HMM is unable to produce a curve similar to the
target, and only the exponential function version of the chaotic
model is capable of mimicking it

Figure 1.  .Moving autocorrelation function for packet size sequences
averaged over the whole sequence. Solid line: target sequence; dashed line:
chaotic sequence, exponential functions (see text); dash/dotted line: chaotic

sequence, square functions; dotted line: HMM

These behaviors are confirmed by the strongly related
Variance-Time plots in Figure 3. The asymptotic behaviors of
these are related in turn to the Hurst parameters of the process,
and the curves lying in the upper part of the right hand figure are
more likely to exhibit LRD properties.

In Figure 4. we show the appreciable result obtained in terms
of averaged moving covariances (six windows) for the chaotic
sequence, exponential functions.  The corresponding result
obtained using square functions is shown in Figure 5. with more
objectional features.  The HMM sequence leads to curves very
similar to the target.

Figure 2.  Variation coefficients for the same sequences in figure 1. Solid line:
target sequence; dashed line: chaotic sequence, exponential functions (see

text); dash/dotted line: chaotic sequence, square functions; dotted line: HMM

Figure 3.  Variance time plots. Solid line: target sequence; dashed line: chaotic
sequence, exponential functions (see text); dash/dotted line: chaotic sequence,

square functions; dotted line: HMM



2) Interarrival times, aggregate level.
From Figure 6. to Figure 10. we present for interarrival time

sequences relative to the above packet size sequence the same
comparison as in the previous figures.   The same comments
remain appropriated.

3) Packet sizes, WWW traffic.

Figure 11. and Figure 12. present the comparison of the
Variation coefficients and of the Variance-Time plots, using only
the exponential version of the chaotic model.

Figure 4.  Moving Covariances. Solid line: chaotic sequence; dashed line:
target sequence

Figure 5.  Moving Covariances. Solid line: chaotic sequence; dashed line:
target sequence.

The behaviors looks similar to the corresponding curves for
aggregate traffic, and similar are the performances of the models.

In Figure 13. the cumulative distributions are shown,
corroborating the past experience on good performances from all
models in mimicking this feature.

Figure 6.  Moving autocorrelation function for interarrival time sequences
averaged over the whole sequence. Solid line: target sequence; dashed line:
chaotic sequence, exponential functions (see text); dash/dotted line: chaotic

sequence, square functions; dotted line: HMM

Figure 7.   Variation coefficients for the same sequences in figure 6.



Figure 8.  Variance time plots. Solid line: target sequence; dashed line: chaotic
sequence; dotted line: HMM

Figure 9.  Moving covariances. Solid lines: chaotic sequence; dotted lines:
target sequence

 IV. NETWORK SIMULATION

To verify the ability of the models to predict the behavior of
the queue buffer, a very simple network has been implemented in
Network Simulator 2 (NS2) with our traces mixing in a node
with other traffic having a Pareto distribution. We look here to
the queue behavior in infinite buffers to enhance the effects of the
trace characteristics, avoiding any queue size reset due to limited
buffer capacities.

We introduce in Figure 14. the buffer queue behavior, as
derived by the Network Simulator, when supplied with measured
traffic, i.e., a measured packet size trace and a companion
interarrival time trace, which will be recalled in the following as
target. Trace length is of the order of 500,000 samples, and
simulations was performed to 1000 seconds of traffic.

Figure 10.  Moving covariances. Solid lines: chaotic sequence;
dotted lines: target sequence

Figure 11.  Variation coefficients for the WWW traffic sequence.
Solid line: target sequence; dashed line: chaotic sequence; dotted line: HMM

Supplying the simulator with a packet size and an interarrival
time series both derived from HMMs, we obtained the buffer
queue curve shown in Figure 15. We see that some features of
the curve in Figure 14. are mimicked, although the whole result
is not very exciting. However, when the HMM packet size trace
is supplied together with the measured interarrival times, the
result, reported in Figure 16. becomes very good.

Supplying the simulator with chaotic packet sizes and
interarrival times, the result is very modest, as shown in Figure
17. and no better behavior is shown when measured interarrival
times are used. This in spite of the fact that the time behavior of
the chaotic trace looks better than the HMM and better statistics
for either packet lengths or interarrival times were obtained in
[16]: probably, using simulated traces for both the input
sequences, any correlation between them is lost, while this
correlation is important when assessing the effects of packet
arrivals on queue sizes.



Figure 12.  Variance time plot. Solid line: target sequence; dashed
line: chaotic sequence; dotted line: HMM

Figure 13.  Cumulative distribution function. Solid line: target
sequence; dashed line: chaotic sequence; dotted line: HMM

This can contribute to explain the failure of the chaotic trace,
as no connection with local properties of the current target trace
is pursued in simulation, and only a likely realization of the
stochastic process is generated.

This is supported by the results obtained with a different set
of traffic measurements, in which the only interesting buffer size
trace was obtained supplying to the network HMM simulated
interarrival times and measured packet sizes, and again the traces
from chaotic sequences were even worse than from HMMs.

A better insight can be gained reducing the process to the
observation of a single time series, for instance, generating from
the measured packet sizes and interarrival times volume
sequences sampled at fixed time. In the following we use the

same target sequences of above to derive traffic samples (i.e.,
cumulated number of bytes) at any 3 ms intervals and the HMM
and chaotic sequences generated for the new target show the time
behavior as in Figure 18. The variation coefficient curves for the
HMM and the two chaotic sequences are shown in Figure 19.
and Figure 20. (the scale is determined by the amplitude
normalization used in the computation). As for the previous
simulated traces, the HMM curve is significantly lower than the
target. A better result was obtained from the chaotic model
(upper curve in Figure 20. ) but, to investigate the effects of this
parameter, a chaotic trace with very low variation coefficient has
been generated too. Building on the flexibility of the chaotic
model, this was obtained without significant changes in the
other statistics. With reference to [19], we optimize weighted
sums of exponential of vector moduli sampled on the trajectories
of seven attractors.

The queue sizes after supplying the Network Simulator (in
the same simulation conditions) are shown in from Figure 21. to
Figure 24. We note that the chaotic trace is very good when
variation coefficients are well matched to those of the target: also
the peak values and the distribution of the time intervals between
them are well represented. With the variation coefficients of the
lower trace in Figure 20. the overall appearance of the queue trace
is somewhat similar, but the peaks are lost. The HMM curve
captures significant features of the target, but the ratio between
peaks and mean value is completely different, and the local
appearance of the draw is objectionably dense thus accounting for
the non-bursty behavior of the model tied to its poor LRD
characteristics.

Notice that various experiments show that the variation
coefficient behavior is by far more effective in causing these
effects than accuracy in matching other details of the target
statistical features, as ringing windowed correlation or covariance
functions.

 V. CONCLUSIONS

A first assessment of the capabilities of HMM and of chaotic
models to mimic relevant features of aggregate and WWW traffic
sequences has been performed. We tried to mimic statistical
features defined according to previous experiences in modeling
error gap processes and attenuation time series. At first glance,
the models show behavior similar to those already experienced,
very good for short term statistics in the case of HMMs, and
good for long term features in the case of chaotic models. The
ability of different modeling approaches to predict the queueing
behavior in an IP network has also been investigated feeding the
traffic traces to the input of a FIFO queue of infinite length have
been presented. The more important findings can be related to
the fact that the Markov based approach by itself is unable to
predict the largest peaks of buffer occupancy unless used in some
hybrid way with real data. On the contrary, the chaos based
traffic generator has proven itself to be very reliable and robust
provided that it possesses a complete information of the traffic
process: under these conditions, the simulations performed
apparently show that a relevant part in the optimization of the
model relies on the so called variation coefficient. Further
studies are needed to achieve a better insight of this behavior and
to compare the proposed chaotic model with other traffic models
in the literature.
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Figure 14.  Buffer queue size over 1000 s of simulation, using target
sequence 1.
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Figure 15.  Buffer queue size, HMM sequence
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Figure 18.  Average value of target, chaotic and HMM sequences from top to bottom.
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Figure 19.  Variation coefficients of target (solid line) and HMM
(dashed line) sequences

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Multisample order r

V
a
r
i
a
t
i
o
n
 
c
o
e
f
f
i
c
i
e
n
t
 

Figure 20.  Variation coefficients of target (solid line) and two
chaotic sequences (dashed and dashed-dotted lines)
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Figure 21.  Buffer queue size over 1000 s of simulation at fixed
interarrival time of 3 ms with the target sequence.
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Figure 22.  As in Fig. 21, but HMM sequence.
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Figure 23.  As in Fig. 21 and 22 but chaotic trace with low variation
coefficients.
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Figure 24.  As in Fig 21 and 22 but with chaotic trace with variation
coefficients matched to the target.


