
Modeling the TCP/IP Flow and Congestion Control
Using a Smith Controller with Input Shaping

Saverio Mascolo
Dipartimento di Elettrotecnica ed Elettronica

Politecnico di Bari, Bari, Italy
mascolo@poliba.it

Abstract— This paper proposes a classical control theoretic
approach to model the TCP flow and congestion control. In
particular, it shows that classic sliding window control, employed
by both the TCP flow and congestion control algorithms, can me
modeled using a proportional controller (P) plus a Smith predictor
(SP), which compensates feedback delays due to propagation
times. Moreover, it shows the stability properties of the TCP and
models different variants of TCP congestion control algorithms,
such as classic TCP Reno or the recent Westwood TCP, in the
same unified control framework by properly shaping the
controller reference input. The proposed analysis gives a simple
and rigorous insight into TCP flow and congestion control and
provides an effective framework to design new control algorithms
that are TCP friendly. As an example, an application to the design
of a TCP friendly rate control algorithm is given.

Keywords: TCP, TCP Modeling, Congestion Control Design,
Rate-based Control

I. INTRODUCTION

The stability of the Internet requires that flows use some form
of end-to-end congestion control to adapt the input rate to the
available bandwidth [1], [5], [6]. Since its introduction in the
late eighties [1], the Transmission Control Protocol (TCP)
congestion control has been quite successful in preventing
congestion collapse.

The (TCP) has two feedback mechanisms to tackle
congestion: the flow control and the congestion control. The
TCP flow control aims at avoiding the overflow of the
receiver’s buffer and is based on explicit feedback. The TCP
congestion control aims at avoiding the flooding of the network
and is based on implicit feedback such as timeouts, duplicate
acknowledgments (DUPACKs), round trip time measurements.
In the latter case, the source infers the network capacity using
an increase/decrease probing paradigm [8]. The increase phase
aims at increasing the flow input rate until the network
available capacity is hit and a congestion episode happens. The
sender becomes aware of congestion via the reception of
duplicate acknowledgments (DUPACKs) or the expiration of a
timeout. Then, it reacts to light congestion (i.e. 3 DUPACKs)
by halving the congestion window (fast recovery) and sending

again the missing packet (fast retransmit), and to heavy
congestion (i.e. timeout) by reducing the congestion window to
one. Both the flow and congestion control implements the self-
clocking principle, that is, when a packet exits a new one enters
the network. The described mechanisms form the core of the
classic Internet congestion control algorithm known as
Tahoe/Reno TCP [1], [4]. It is interesting to notice that these
mechanisms continue to be at the core of all enhanced TCP
congestion control algorithms.

Research on TCP congestion control is still active in order to
improve its efficiency and fairness, especially in new
environments such as the wireless Internet [9], [12], [25] or the
high-speed Internet [20], [26]. We briefly summarize the most
significant modifications that have been proposed up to now.

The New Reno feature is an enhancement of Reno that has
been proposed to avoid multiple window reductions in a
window of data [10]. TCP Vegas estimates the expected
connection rate as cwnd/RTTm and the actual connection rate as
cwnd/RTT; when the difference between the expected and the
actual rate is less than a threshold α>0, the cwnd is additively
increased. When the difference is greater than a threshold β>α
then the cwnd is additively decreased. When the difference is
between α and β, cwnd is maintained constant [11]. TCP
Westwood uses an end-to-end estimation of the available
bandwidth to adaptively set the control windows after
congestion [12], [13]. Both Vegas and Westwood preserve the
standard multiplicative decrease behavior after a timeout. TCP
Santa Cruz proposes to use estimate of delay along the forward
path rather than round trip delay and to reach a target operating
point for the number of packets in the bottleneck of the
connection [14].

TCP Westwood [12] uses an end-to-end estimation of the
available bandwidth to adaptively set the control windows after
congestion. In [3] the concept of generalized advertised window
has been proposed to provide an explicit indication of the
network congestion status.

Recently, non linear stochastic differential equations have
been proposed to model the dynamics of the TCP congestion

This work was funded by the MIUR-FIRB project n.
RBNE01BNL5 “Traffic Models and Algorithms for Next Generation
IP networks Optimisation (TANGO)”

window (cwnd) [13], [15]-[17]. In these models, the dynamics
of the expected value of the cwnd is mainly expressed as a
function of the packet drop probability through a non-linear
differential equation. These models, and their linearized ones,
have been used to predict the long-term TCP throughput and to
design control laws for throttling the packet drop probability of
routers implementing Active Queue Management [27]. In
particular in [27], the mentioned nonlinear stochastic
differential model of the TCP window has been linearized
around the equilibrium to derive a transfer function from the
packet drop probability to the bottleneck queue length. The
linearized model had been employed to design a control law for
the packet drop rate aiming at stabilize the queue average
length. It is not clear how effective is the model to deal with
real-time dynamics of TCP and in presence of multi-bottleneck
topologies.

This paper proposes a classical control theoretic approach to
model the TCP flow and congestion control, along with its
variants such as for example Reno and Westwood, in a unified
framework. The model is general and captures multi-
bottlenecks as well as moving bottleneck. The work is
organized as follows: Section 2 outlines the TCP flow and
congestion control algorithm; Section 3 models a generic TCP
going over a store-and-forward shared networks using buffers
and integrators; Section 4 models the TCP flow and congestion
control using a Smith predictor and a proportional controller;
Section 5 models different TCP algorithms, such as Reno and
Westwood TCP, by properly setting the controller input;
Section 6 proposes an application of the developed model to
design a TCP friendly rate-based control algorithm; finally,
Section 7 draws the conclusions.

II. TCP FLOW AND CONGESTION CONTROL
A TCP connection establishes a virtual pipe between the send socket

buffer and the receive socket buffer as shown in Fig. 1.

The TCP has two feedback mechanisms to tackle congestion: the
flow control mechanism that prevents the sender from overflowing the
receiver’s buffer, and the congestion control mechanism that prevents
the sender from overloading the network.

A The TCP Flow Control Algorithm

The TCP flow control is based on explicit feedback. In
particular, the TCP receiver sends to the source the Receiver’s
Advertised Window, which is the buffer available at the
receiver. Let MaxRcvBuffer be the size of the receiver buffer in
bytes, LastByteRcvd the last byte received and NextByteRead
the next byte to be read. On the receive side TCP must keep

LastByteRcvd−NextByteRead≤MaxRcvBuffer

to avoid overflow. Therefore, receiver advertises a window size
(AdWnd) of

AdWnd=MaxRcvBuffer−(LastByteRcvd−NextByteRead)

which represents the amount of free space remaining in the receiver
buffer. The TCP on the send side computes an Effective Window W

 W=AdWnd−(LastByteSent−LastByteAcked) (1)

which limits the number of outstanding packets [7].

B The TCP Congestion Control Algorithm

The TCP congestion control employs a trial and error
probing mechanism aiming at learning the network capacity
using only implicit feedback such as timeouts and
acknowledgments. In particular, the TCP estimates the best
effort capacity of the network by increasing and decreasing the
congestion window variable. There are two increasing phases:
the slow start and the congestion avoidance. During the slow
start phase the cwnd is exponentially increased until the slow
start threshold (ssthresh) value is reached. This phase is
intended to quickly grab available bandwidth. After the ssthresh
value is reached, the cwnd is linearly increased to gently probe
for extra available bandwidth. This phase is called congestion
avoidance. At some point the TCP connection starts to lose
packets. After a timeout cwnd is drastically reduced to one and
the slow start, congestion avoidance cycle repeats. After 3
DUPACKs cwnd is halved and the congestion avoidance phase
is entered [1].

The TCP sender computes the minimum of the congestion
window and the advertised window in order to implement both
flow and congestion control. In particular, it computes the
Effective Window W as follows

W=MIN(Cwin,Adidn)−OutstandingPackets (2)

where

OutstandingPackets= LastByteSent−LastByteAcked

are the in flight packets [7].

Send Socket
Buffer

TCP/IP

Application
Data

TCP/IP

Application
Data

Receiver
Socket Buffer

INTERNET

Fig. 1. Schematic of a TCP connection

III. MODELLING A GENERIC TCP FLOW

In his milestone paper, Van Jacobson (1988) clearly states
that: “A packet network is to a very good approximation a
linear system made of gains, delays and integrators” [1]. This
paper proposes a detailed model of a TCP/IP connection using
(a) integrators to model network and receiver buffers and (b)
delays to model propagation times.

A data network is a set of store-and-forward nodes connected
by communication links. A generic TCP flow goes through a
communication path made of a series of buffers and
communication links.

The number of packets of the considered TCP flow that are
stored at the generic i-th buffer along the communication path is
given by the following dynamic equation:

 ∫ ∞− −−= t dioibiutix ττττ)]()()([)((3)

where ui(t)≥0 models the data arrival rate, bi(t)≥0 models the
data depletion rate, i.e. the used bandwidth, and oi(t)≥0 models
the overflow data rate, i.e. the data that are lost when the buffer
is full and the input rate exceeds the output rate.

The dynamic equation of the generic communication link (i-1)
connecting the (i-1)-th buffer to the next (i)-th buffer is a pure
delay. In particular, letting bi-1(t) be the link input rate at the (i-
1)-th buffer and ui(t) be the link output rate at the next (i)-th
buffer, it results:

)1(1)(−−−= iTtibtiu (4)

where Ti-1 is the link propagation time.

Starting from the basic equations (3) and (4), we propose to
model a generic TCP flow over an IP network as it is shown in
Fig. 2. In particular, Fig. 2 shows a functional block diagram
made of:

1) The TCP connection receiver buffer of length xr(t), which
is modeled using an integrator with Laplace transfer

function 1/s. The receiver buffer receives the inputs ur(t),
br(t), or(t), which represent the input rate, the depletion
rate and the overflow data rate, respectively;

2) The n-th buffer that the TCP connection goes through
before reaching the receiver buffer, which is modeled
using an integrator with output xn(t). The n-th buffer
receives the inputs un(t), bn(t), on(t), which, again,
represent the input rate, the depletion rate and the
overflow data rate, respectively. It is important to notice
that the depletion rate bn(t) reaches the next buffer (n+1),
which is the receiver buffer, after the propagation time Tn,
i.e. ur(t)= bn(t-Tn). Moreover, it should be noted that the
input rate un(t) is equal to the depletion rate bn-1(t) at the
previous (n-1)-th buffer, i.e. bn-1(t-Tn-1)= un(t), where Tn-1
is the propagation time from the (n-1)-th buffer to the n-th
buffer. Depletion rates are unpredictable because they
model the best effort bandwidth available for a TCP
connection when going over statistically multiplexed IP
network.

The series of buffers shown in Fig. 2 can be recursively
augmented both in the left direction, to model up to the first
buffer node encountered by the TCP connection, and in the
right direction to model buffers n+j, with j=2,p encountered by
ACK packets when going back from the receiver to the sender.

By considering a closed surface that contains the TCP path
going from the first to the last buffer modeled by a set of
integrators indexed from 1 to n+p=m, where the m-th integrator
models the last buffer encountered by the TCP along the
connection round trip, we can invoke the flow conservation
principle for the unique input rate, which is the TCP input rate
u1(t), and the output rates that are: (a) bm(t), which models the
bandwidth used by the TCP connection, i.e. the best-effort
bandwidth as viewed by the considered TCP flow through the
ACK stream; and (b) the overflow rates oi(t), for i=1,m, which
represent packets that are lost at each buffer along the path
connection.

Fig. 2 Dynamic block diagram of a generic TCP/IP flow

ur(t)= bn(t-Tn)

br(t)

−

xr(t)

s
1

–

s

1

xn(t)

bn(t)

−

on(t)

un(t)

or(t)
−

nTse ⋅−

−
s

1

xn-1(t)

bn-1(t)

−

on-1(t)

un-1(t)

1−⋅− nTse

In equations, we can write the number x(t) of packets
belonging to the considered TCP flow and stored into the
network by adding packets stored at each buffer along the path:

 ∑
=

=
m

i
tixtx

1

)()((5)

Substituting (3) in (5) and considering the (4) it turns out

() ττττττ d
m

i
iTibib

t m

i
iombutx]

1

1
)()(

1
)()()(1[)(∑∫ ∑

−

=
−−−

∞− =
−−=

that can be rewritten as

 ττττττ d
m

i

t

Tt
ibd

t m

i
iombutx

i

∑ ∫∫ ∑
−

= −

−

∞− =
−−=

1

1
)(

1
)]()()(1[)((6)

Eq. (6) states that the network storage is equal to the integral
of the TCP input rate u1(t) minus the output rate bm(t) leaving
the last buffer of the path, minus the sum of the overflow rates
oi(t), minus the sum of packets that are in flight over each link i.

Since the TCP implements an end-to-end congestion control
that does not receive any explicit feedback from the network, it
is not possible for the controller to know terms in (6). Thus, we
consider the sum of the in flight packets plus the stored packets,
which we call the total network storage tx :

ττττττ d
t m

i
iombud

m

i

t

Tt
ibtxttx

i

∫ ∑∑ ∫
∞− =

−−=
−

= −

+=
1

)]()()(1[
1

1
)()()(

and the sum of overflow rates to :

∑
=

=
m

i

)t(io)t(to

1

Thus, we can write

 ∫
∞−

ττ−τ−τ=

t

d)](to)(mb)(u[)t(tx 1 (7)

By considering that the TCP establishes a “circular flow”, i.e.
that the data input rate comes back to the sender as an ACK
rate, it can be said that bm(t) models the rate of ACK packets.
Thus we can write:

)()(1)(ttoTtutmb −−= (8)

which says, in mathematical words, that the ACK rate is equal
to the input rate, delayed by the round trip time, minus the loss
rate. By substituting (8) in (7) it turns out:

∫∫
−

ττ=

∞−

τ−τ−τ=

t

Tt

d)(u

t

d)]T(u)(u[)t(tx 111 (9)

Equation (9) states that the network total storage is equal to the
integral of the input during the last round trip time T.

IV. MODELING THE TCP FLOW AND CONGESTION
CONTROL

This section aims at showing that the closed loop control system
depicted in Fig. 3 implements both the TCP flow and congestion
control. In details, the following variables and blocks are shown:

Fig. 3: Functional block diagram of the TCP flow and congestion control

br(t)

ur(t)

−

AdWnd

r2(t)=cwnd

xr(t)

s
1

–

r1

−

s

1u1(t)

xt(t)

bt(t)
−

s

Tse ⋅−−1

k

ot(t)

Min(,)
iTse 1⋅−

−
or(t)
−

Network bottleneck
or

network total storage
Smith predictor

Receiver buffer

irTse ⋅−

fbTs
e

⋅−

(1) The receiver queue length xr and the receiver capacity r1 provide
the term r1−xr (i.e. the Advertised Window), which reaches the
sender after the propagation time Tfb that is modelled in the

Laplace domain by the transfer function fbsT
e
−

;
(2) The set point r2(t) represents a threshold for the total

network storage, which is modeled by the queue xt(t);
(3) The minimum block takes the minimum between the

Advertised Window and)(2 tr ;

(4) Delays T1i and Tir model the time delay from the sender to
the generic node i and from the node i to the receiver,
respectively; the forward delay from the sender to the
receiver is Tfw= T1i + Tir;

(5) The controller transfer function

)1(1
)(

sTe
s

k
k

sG
−−+

= , (10)

which contains the proportional gain k and the Smith

predictor ssTe /)1(−− , where T is the round trip time

sum of the forward delay Tfw and the backward delay Tfb.
Notice that the role of the Smith predictor is to overcome
the delay T, which is inside the feedback loop and is
harmful for the stability of the closed-loop control system
(Mascolo, 1999).

Notice that the buffer xt in Fig. 3 can model both the total network
storage of packets but also it can model the generic buffer xi that is the
bottleneck of the TCP connection at time t; moreover, a moving
bottleneck is easily captured by the model through delays T1i and Tir
where i is the generic moving bottleneck.

In order to show that the block diagram in Fig. 3 models the TCP/IP
flow and congestion control, first we will assume that the bottleneck is
at the receiver and then that the bottleneck is inside the network.

A. The TCP Flow Control

By assuming that the bottleneck is at the receiver, it results:
min(Adwnd,r2(t))=Adwnd, ur(t)=u1(t-Tfw) and ot(t)=0. In other
words, the connection is constrained by the receiver, and the
input rate reaches the receiver after the forward delay without
network queuing, that is bt(t)=u1(t-T1i). Under these conditions,
Fig. 3 can be transformed into Fig. 4 that models the TCP flow
control. The following propositions can be shown.

Proposition 1: The Smith controller (10) implements the TCP
flow control equation (1).

Proof: To find the input rate u1(t) computed by the TCP
sender we use standard Laplace techniques, that is, we compute
the Laplace transform of the input rate:

[]













 −−+

−
−=

s

sTe
k

ksT
esrXsRsU fb

1
1

)()(1)(1

that can be written as

[] fbsT
erXRk

s

sTe
k UU

−
−+












 −−
−= 1

1
11

By transforming back to time domain it results:

 ττ d
t

Tt
ufbTtrxfbTtr

k
tu

∫ −
−−−−=)(1)()(1

)(1 (11)

By considering that

=−−−)()(1 fbTTrxfbTTr Advertised window

and that

=
−∫ ττ d
T

Tt
u)(1 Outstanding packets

Equation (11) gives the classic window-based flow control
equation (1), where ktuW /)(1= . By considering that

TWtu /)(1 = relates the rate and the window of a window-based

control, it results 1/k=T.
Notice that the outstanding packets automatically take into

account the round trip time T that in general can be time
varying due queuing delays. In the case of flow control T is
constant since it is assumed that there is no congestion inside
the network which implies that network queuing delay is zero
and round trip time is pure propagation delay.

Fig. 4: Functional block diagram of the TCP flow control

fwTs
e

⋅−k
ur(t)

br(t)

AdWnd

xr(t)

s
1

–

r1

−

u1(t)

s

Tse ⋅−−1

−

or(t)
−

Smith predictor

fbTs
e

⋅−

Proposition 2: The TCP flow control equation (11)
guarantees that the receiver queue is always bounded by the
receiver capacity 1r . i.e.

1)(rtrx < for any t

Proof: The queue length can be computed by exploiting the
superposition property of linear systems. In particular, it is easy
to compute the input-output transfer function from R1(s) to the
receiver queue length Xr(s) that is:

sTe

sk

k

R
rX −

+
=

1

and the transfer function from Br(s) and Or(s) to Xr(s) that is:

ks

sTe
s

sTe
s

sTe
kss

k
srBrO

rX
+

−
−

−
+−=−

+
+−=

+
1

)(

1

By assuming)(11)(1 trtr ⋅= , where 1r is the receiver buffer

capacity and 1(t) is the step function1 that models a connection

starting at t=0, there results:
s
r

sR 1)(1 = . By exploiting the

superposition property of linear systems and by transforming
back to time domain there results:

∫
−

+−

−








+
+−−







 −

+
−=

−

t

Tt

drorb

e
ks

rOrB
LsTe

ks

k

s

r
Ltrx

sT

τττ)]()([

111)(

which satisfies the condition

1)(1)(11
11)(rTtTtkersTe

ks
k

s
r

Ltrx <−⋅




 −−−⋅=







 −

+
−≤

since or(t), br(t) are always non negative. This concludes the

proof.

Lemma 1: Proposition 2 guarantees or(t)=0 for any t.

Proof: Proposition 2 proves that the receiver queue length is
always upper bounded by the receiver queue capacity, which
implies that receiver overflow is always avoided, i.e. or(t)=0 for
any t.

1 The step function is defined as




<
≥

=
0t for 0

0t for
t

1
)(1 .

B. The TCP Congestion Control

By assuming that bottleneck is localized inside the network,
there results min(Adwnd,r2(t))= r2(t) and we can ignore the
outer feedback loop. Therefore, Fig. 3 can be transformed into
the equivalent one shown in Fig. 5, which models the TCP
congestion control.

Proposition 3: The Smith controller (10) implements the TCP

congestion control equation (2).

Proof: By assuming that the bottleneck is inside the network,
there results: min(Adwnd,r2(t))= r2(t). From Fig. 5, the output
of the Smith predictor in the Laplace domain is:

s

sTe
sUsQ

−−
=

1
)(1)(

By transforming back to time domain it results:

=
−

= ∫ ττ d
T

Tt
utq)(1)(outstandingpackets

Therefore the output of the controller is:

 ()gpacketsoutstandintrktu −=)(2)(1 (12)

that can be rewritten as

 gpacketsoutstandintr
k

tu
−=)(2

)(1 (13)

Equation (13) gives the classic window-based congestion

control equation (2), where ktuW /)(1= , and r2(t)=cwnd. This

concludes the proof.

Remark 1: It should be noted that (12) and (13) are the rate-

besed and window-based versions of the same control equation.

Proposition 4: The TCP congestion control equation (13) guarantees

a total network storage xt that is always bounded by the threshold
0)(2 >tr , i.e.:

)(2)(trttx ≤ for any t

Proof: From (9), the total network storage is:

)()(1)(tq
t

Tt

duttx =
−

= ∫ ττ

Since u1(t) and q(t) are always non negative, and r2(t) is strictly
positive, from the control law:

Fig. 5 Functional block diagram of the TCP congestion control









−

−= ∫ ττ d
T

Tt
utrktu)(1)(2)(1

it turns out)()()(2 ttxtqtr =≥ , which concludes the proof.

Lemma 2: If a TCP flow finds in each buffer it goes
through a space of ci packets, where ci> r2(t) for any t and i,
then the Proposition 4 guarantees ot(t)=0 for any t.

Proof: From Proposition 4, which proves that)(2)(trttx ≤ ,

and assumptions of Lemma 2, the proof follows directly.

V. MODELING RENO OR WESTWOOD TCP BY INPUT SHAPING

In this section we show that the dynamic model depicted in
Fig. 5 is able to model successful variants of TCP congestion
control, such as for example Tahoe/Reno [1] or the recent
Westwood TCP [12]. Other TCP variants, such as Vegas or
Santa Cruz, could also be modeled in the same unified
framework.

We have seen that the congestion control algorithm aims at
estimating the available bandwidth using a probing
mechanism. The classic TCP probing mechanism, which is
currently used in all successful variants of the TCP such as
Tahoe/Reno, New Reno or Westwood, comprises two
mechanisms: the slow-start phase, which exponentially
increase the congestion window up to the ssthresh, and the
congestion avoidance phase which linearly increase the cwnd
when cwnd≥ ssthresh. Now we show that both these
mechanisms can be modeled in the control theoretical
framework reported in Fig. 5 by properly shaping the
controller input r2(t)=cwnd.

A. The Reno Algorithm

The TCP Reno slow-start phase can be modeled by setting
the reference input r2(t) as follows:

ssthreshtr while ortr
T
t

<⋅=)(22)(2

where the initial window r0 is generally equal to 1 or 2 [19].
TCP Reno enters the congestion avoidance phase when
r2(t)=ssthresh at)0(2log1 rssthrehTt −= . This phase can be

modelled by setting the reference input r2(t) as follows:

ssthreshtr when
T

tt
ssthreshtr ≥

−
+=)(2

1)(2

The TCP probing phase ends when 3 DUPACKSs are
received or a timeouts happens, which indicate that the
network capacity has been hit. In these cases the cwnd
behavior can be modeled using the following settings for r2(t):

After a timeout at t k

2

)(2 tr
ssthresh =

 0)(2 rtr =

ur(t)
br(t)

−

r2(t) xr(t)

s
1

–

s
1u1(t)

xt(t)

bt(t)
−

s

Tse ⋅−−1

k

ot(t)

iTse 1⋅−

−
or(t)
−

Network bottleneck
or

network storage
Smith predictor

Receiver buffer

irTse ⋅−

bm (t)
fbTs

e
⋅−

ssthreshtr if
T

ktt
ssthreshtr

ssthreshtr if rtr
T

ktt

≥
−

+=

<⋅=

−

)(2)(2

)(220)(2

After 3 DUPACKs at t k

2

)(2 tr
ssthresh =

)(2 T
tt

ssthreshtr k−+=

B The Westwood algorithm

TCP Westwood employs the same probing mechanism of
Reno. It differs from Reno because of the behavior after
congestion. In fact, Westwood sets the cwnd and ssthresh
using an end-to-end estimate of the network bandwidth bm(tk)
available at time of congestion. In particular, the Westwood
TCP window behavior after congestion can be modeled as
follows:

After a timeout at t k

 minRTT)kt(bssthresh ⋅=

 rtr 0)(2 =

ssthreshtr if
T

ktt
ssthreshtr

ssthreshtr if ortr
T

ktt

≥
−

+=

<⋅=

−

)(2)(2

)(22)(2

After 3 DUPACKs at t k

 minRTT)kt(bssthresh ⋅=

T

ktt
ssthreshtr

−
+=)(2

VI. DESIGNING A TCP-FRIENDLY RATE CONTROL
The TCP congestion control is window-based. As a consequence,

it sends packets in bursts. Burstiness degrades the performance of the
control algorithm and makes it unsuitable for application such as
audio and/or video where a relative smooth rate is of importance
[18,28]. To overcome the mentioned problem, rate-based control
algorithms have been proposed [24],[29]. A key requirement that a
new rate-based congestion control algorithm must satisfy is
friendliness towards TCP, i.e. it must share network bandwidth with
TCP fairly. The idea of TFRC is to enforce and guarantee friendliness
by using the TCP long-term throughput equation [30] to compute the

input rate. This approach could reveal to be unfriendly since a TFRC
sets instantaneously the rate that, in similar conditions, a TCP flow
would reach only in long-term conditions [31,24].

This section sketches how the analysis developed in this paper can
be used to design a TCP friendly rate-based congestion control.

For that purpose we start from the TCP congestion control
equation in rate-based form, which is

 ()gpacketsoutstandincwndktu −=)(1 (14)

In order to propose a rate-based congestion control that is friendly
to TCP, we propose the exact rate-based version of the TCP Reno
congestion control by properly setting cwnd=r2 in (14) to match the
increasing/decreasing mechanism of Reno.

A Exponential probing corresponding to the slow-start phase

This phase aims at quick probing of network capacity and
corresponds to Reno slow -start phase. It is obtained by setting the
controller input r2(t)=cwnd in (14) as follows:

T

tt

trcwnd

0

2)0(

−

⋅= while cwnd ≤ ssthresh

where t0 is the last update time, T is the round trip time and r(t0) is
equal to one or two [19].

B Linear probing corresponding to the congestion avoidance
phase

This phase aims at gentle probing of network capacity and
corresponds to Reno congestion avoidance phase. It is obtained by
setting the controller input r2(t)=cwnd in (14) as follows:

T

tt
tcwndcwnd 0)0(

−
+= when cwnd > ssthresh

After a congestion episode (timeout or DUPACK) the controller
input r2(t)=cwnd in (14) is set as follows

After a timeout a t 0

 ktcwnd
ssthresh

2

)(
=

 0(trtr))(2 =

Enter the exponential probing

After 3 DUPACKs at t k

 ktcwnd
ssthresh

2

)(
=

T

tt
ktcwndcwnd 0)(

−
+=

VII. CONCLUSIONS

This paper has developed a classical control theoretic approach to
model the dynamic behavior of TCP congestion control. It has been
shown that (1) a proportional controller plus a Smith predictor
provides an exact model of the Internet sliding window flow and

congestion control; (2) a model of successful TCP congestion control
algorithms, such as classic Reno or recent Westwood TCP, can be
derived by proper shaping of the controller reference signal. In order
to show the utility of the proposed model, an application to the design
of a TCP friendly rate control algorithm has been sketched.

VII. REFERENCES

[1] V. Jacobson, “Congestion Avoidance and Control,”
ACM Computer Communications Review, 18(4): 314 -
329, August 1988.

[2] S. Mascolo, “Congestion control in high-speed
communication networks using the Smith principle”,
Automatica, vol. 35, no. 12, dec. 1999.

[3] M. Gerla and R. Locigno and S. Mascolo and R. Weng,
“Generalized Window Advertising for TCP Conges tion
Control”, European Transactions on
Telecommunications, no. 6, Nov/Dec. 2002.

[4] M. Allman, V. Paxson, W. R. Stevens, “TCP congestion
control,” RFC 2581, April 1999.

[5] D. Clark, “The design philosophy of the DARPA Internet
protocols,” In Proceedings of Sigcomm’ 88 in ACM
Computer Communication Review, vol. 18, no. 4, pp.
106 - 114, 1988.

[6] Floyd, S.; Fall, K., “Promoting the use of end-to-end
congestion control in the Internet”, IEEE/ACM
Transactions on Networking, Aug. 1999, vol.7, (no.4):
458-72.].

[7] L. L. Peterson, B. S. Davie, Computer Networks, Morgan
Kaufmann, San Francisco, CA, 2000.

[8] Dah-Ming Chiu;Jain, R., “Analysis of the increase and
decrease algorithms for congestion avoidance in
computer networks”, Computer Networks and ISDN
Systems, June 1989, vol.17, (no.1), p. 1-14.

[9] T.V. Lakshman and U. Madhow, “The Performance of
TCP/IP for Networks with High Bandwidth-Delay
Products and Random Loss”, IEEE/ACM Transactions
on Networking, 5(3), June 1997.

[10] S. Floyd, T. Henderson, “ NewReno Modification to
TCP's Fast Recovery”, RFC 2582, April 1999.

[11] Brakmo L. S., O’Malley S. W., and Peterson L. L., “TCP
Vegas: End-to-end congestion avoidance on a global
Internet,” IEEE Journal on Selected Areas in
Communications (JSAC), vol. 13, no.8, pp. 1465-1480,
1995.

[12] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, R. Wang,
“TCP Westwood: End-to-End Bandwidth Estimation for
Efficient Transport over Wired and Wireless Networks”,
ACM Mobicom 2001, July, Rome, Italy and Wireless
Networks, vol. 8, no. 5, Sept. 2002.

[13] L.A. Grieco, S. Mascolo, “TCP Westwood and Easy
RED to Improve Fairness in High -Speed Networks”,
Proc. of the VII International Workshop on Protocols For
High-Speed Networks (PfHSN'2002), April, 2002 Berlin,
Germany. Lecture Notes on Computer Science (Lcns),
Springer Verlag.

[14] C. Parsa, J .J. Garcia-Luna-Aceves, “Improving TCP
Congestion Control over internets with heterogeneous
Transmission media”, Proc. IEEE Int. Conf. On Network
protocols, Toronto, Oct. 31- Nov. 3,1999.

[15] F. P. Kelly, “Mathematical Modeling of the Internet,”
Proc. 4

th
 International Congress on Industrial and

Applied Mathematics, July 1999.

[16] V. Misra, W. Gong, D. Towsley, "Fluid-based Analysis
of a Network of AQM Routers Supporting TCP Flows
with an Application to RED", Proc. of Sigcomm2000 in
ACM Computer Communication Review, vol. 30, no. 4,
pp. 151-160, 2000.

[17] S. H. Low, "A duality model of TCP flow control", Proc.
of ITC Specialist Seminar on IP Traffic Measurements,
Modeling and Management, Sept. 2000.

[18] D. Bansal and H. Balakrishnan and S. Floyd and S.
Shenker, “Dynamic Behavior of Slowly-Responsive
Congestion Control Algorithms”, Proc. of Sigcomm
2001.

[19] M. Allman, S. Floyd, C. Partridge, “Increasing initial
TCP’s initial window,” RFC 2414, Sept. 1998.

[20] V. Jacobson, R. Braden, D. Borman, “ TCP Extensions
for High Performance ”, RFC 1323, May 1992.

[21] Hoe, J., C., “Improving the Start-up Behavior of a
Congestion Control Scheme for TCP,” Proc. of ACM
Sigcomm'96, pp. 270-280.

[22] Villamizar, C. and Song C. (1995), “High Performance
TCP in ANSNET”, ACM Computer Communication
Review, vol. 24, no. 5, pp. 45-60.

[23] S. Mascolo, ”Modeling and Stability Analysis of the
Internet Congestion Control”, Technical Report no.
S17/03.

[24] L. A. Grieco, S. Mascolo, "Adaptive Rat e Control for
streaming flows over the Internet ", to appear on ACM
Multimedia System Journal.

[25] Balakrishnan, H.; Padmanabhan, V.N.; Seshan, S.; Katz,
R.H. A comparison of mechanisms for improving TCP
performance over wireless links, IEEE/ACM
Transactions on Networking, 5(6), (1997), 756-769.

[26] S. Floyd, “HighSpeed TCP for Large Congestion
Windows”, draft-ietf-tsvwg-highspeed-00.txt.

[27] C.V. Hollot, Vishal Misra, Don Towsley, Wei-Bo Gong,
“ On Designing Improved Controllers for AQM Routers
Supporting TCP Flows”, Proc. of Infocom 2001.

[28] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg
Widme, “Equation-Based Congestion Control for
Unicast Applications”, Proc. Sigcomm 2000.

[29] Handley, M., Floyd, S., Pahdye, J., and Widmer, J.,
“TCP Friendly Rate Control (TFRC): Protocol
Specification.”, RFC 3448, Jan. 2003.

[30] J. Padhye, V. Firoiu, D. Towsley and J. Kurose",
"Modeling TCP Throughput: A Simple Model and its
Empirical Validation", Proc. ACM Sigcomm 1998, pp.
303-314.

