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Abstract— This paper proposes a classical control theoretic 
approach to model the TCP flow and congestion control. In 
particular, it shows that classic sliding window control, employed 
by both the TCP flow and congestion control algorithms, can me 
modeled using a proportional controller (P) plus a Smith predictor 
(SP), which compensates feedback delays due to propagation 
times. Moreover, it shows the stability properties of the TCP and 
models different variants of TCP congestion control algorithms, 
such as classic TCP Reno or the recent Westwood TCP, in the 
same unified control framework by properly shaping the 
controller reference input. The proposed analysis gives a simple 
and rigorous insight into TCP flow and congestion control and 
provides an effective framework to design new control algorithms 
that are TCP friendly. As an example, an application to the design 
of a TCP friendly rate control algorithm is given. 

Keywords: TCP, TCP Modeling, Congestion Control Design, 
Rate-based Control 

I.  INTRODUCTION  

The stability of the Internet requires that flows use some form 
of end-to-end congestion control to adapt the input rate to the 
available bandwidth [1], [5], [6]. Since its introduction in the 
late eighties [1], the Transmission Control Protocol (TCP) 
congestion control has been quite successful in preventing 
congestion collapse.  

The (TCP) has two feedback mechanisms to tackle 
congestion: the flow control and the congestion control. The 
TCP flow control aims at avoiding the overflow of the 
receiver’s buffer and is based on explicit feedback. The TCP 
congestion control aims at avoiding the flooding of the network 
and is based on implicit feedback such as timeouts, duplicate 
acknowledgments (DUPACKs), round trip time measurements. 
In the latter case, the source infers the network capacity using 
an increase/decrease probing paradigm [8]. The increase phase 
aims at increasing the flow input rate until the network 
available capacity is hit and a congestion episode happens. The 
sender becomes aware of congestion via the reception of 
duplicate acknowledgments (DUPACKs) or the expiration of a 
timeout. Then, it reacts to light congestion (i.e. 3 DUPACKs) 
by halving the congestion window (fast recovery) and sending 

again the missing packet (fast retransmit), and to heavy 
congestion (i.e. timeout) by reducing the congestion window to 
one. Both the flow and congestion control implements the self-
clocking principle, that is, when a packet exits a new one enters 
the network. The described mechanisms form the core of the 
classic Internet congestion control algorithm known as 
Tahoe/Reno TCP [1], [4]. It is interesting to notice that these 
mechanisms continue to be at the core of all enhanced TCP 
congestion control algorithms.  

Research on TCP congestion control is still active in order to 
improve its efficiency and fairness, especially in new 
environments such as the wireless Internet [9], [12], [25] or the 
high-speed Internet [20], [26]. We briefly summarize the most 
significant modifications that have been proposed up to now.  

The New Reno feature is an enhancement of Reno that has 
been proposed to avoid multiple window reductions in a 
window of data [10]. TCP Vegas estimates the expected 
connection rate as cwnd/RTTm and the actual connection rate as 
cwnd/RTT; when the difference between the expected and the 
actual rate is less than a threshold α>0, the cwnd is additively 
increased. When the difference is greater than a threshold β>α 
then the cwnd is additively decreased. When the difference is 
between α and β, cwnd is maintained constant [11]. TCP 
Westwood uses an end-to-end estimation of the available 
bandwidth to adaptively set the control windows after 
congestion [12], [13]. Both Vegas and Westwood preserve the 
standard multiplicative decrease behavior after a timeout. TCP 
Santa Cruz proposes to use estimate of delay along the forward 
path rather than round trip delay and to reach a target operating 
point for the number of packets in the bottleneck of the 
connection [14].  

TCP Westwood [12] uses an end-to-end estimation of the 
available bandwidth to adaptively set the control windows after 
congestion. In [3] the concept of generalized advertised window 
has been proposed to provide an explicit indication of the 
network congestion status.  

Recently, non linear stochastic differential equations have 
been proposed to model the dynamics of the TCP congestion 
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window (cwnd) [13], [15]-[17]. In these models, the dynamics 
of the expected value of the cwnd is mainly expressed as a 
function of the packet drop probability through a non-linear 
differential equation. These models, and their linearized ones, 
have been used to predict the long-term TCP throughput and to 
design control laws for throttling the packet drop probability of 
routers implementing Active Queue Management [27]. In 
particular in [27], the mentioned nonlinear stochastic 
differential model of the TCP window has been linearized 
around the equilibrium to derive a transfer function from the 
packet drop probability to the bottleneck queue length. The 
linearized model had been employed to design a control law for 
the packet drop rate aiming at stabilize the queue average 
length. It is not clear how effective is the model to deal with 
real-time dynamics of TCP and in presence of multi-bottleneck 
topologies. 

This paper proposes a classical control theoretic approach to 
model the TCP flow and congestion control, along with its 
variants such as for example Reno and Westwood, in a unified 
framework. The model is general and captures multi-
bottlenecks as well as moving bottleneck. The work is 
organized as follows: Section 2 outlines the TCP flow and 
congestion control algorithm; Section 3 models a generic TCP 
going over a store-and-forward shared networks using buffers 
and integrators; Section 4 models the TCP flow and congestion 
control using a Smith predictor and a proportional controller; 
Section 5 models different TCP algorithms, such as Reno and 
Westwood TCP, by properly setting the controller input; 
Section 6 proposes an application of the developed model to 
design a TCP friendly rate-based control algorithm; finally, 
Section 7 draws the conclusions.  

II. TCP FLOW AND CONGESTION CONTROL 
A TCP connection establishes a virtual pipe between the send socket 

buffer and the receive socket buffer as shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

The TCP has two feedback mechanisms to tackle congestion: the 
flow control mechanism that prevents the sender from overflowing the 
receiver’s buffer, and the congestion control mechanism that prevents 
the sender from overloading the network. 

A The TCP Flow Control Algorithm 

The TCP flow control is based on explicit feedback. In 
particular, the TCP receiver sends to the source the Receiver’s 
Advertised Window, which is the buffer available at the 
receiver. Let MaxRcvBuffer be the size of the receiver buffer in 
bytes, LastByteRcvd the last byte received and NextByteRead 
the next byte to be read. On the receive side TCP must keep 

LastByteRcvd−NextByteRead≤MaxRcvBuffer 

to avoid overflow. Therefore, receiver advertises a window size 
(AdWnd) of 

AdWnd=MaxRcvBuffer−(LastByteRcvd−NextByteRead) 

which represents the amount of free space remaining in the receiver 
buffer. The TCP on the send side computes an Effective Window W  

 W=AdWnd−(LastByteSent−LastByteAcked) (1) 

which limits the number of outstanding packets [7]. 

B The TCP Congestion Control Algorithm 

The TCP congestion control employs a trial and error 
probing mechanism aiming at learning the network capacity 
using only implicit feedback such as timeouts and 
acknowledgments. In particular, the TCP estimates the best 
effort capacity of the network by increasing and decreasing the 
congestion window variable. There are two increasing phases: 
the slow start and the congestion avoidance. During the slow 
start phase the cwnd is exponentially increased until the slow 
start threshold (ssthresh) value is reached. This phase is 
intended to quickly grab available bandwidth. After the ssthresh 
value is reached, the cwnd is linearly increased to gently probe 
for extra available bandwidth. This phase is called congestion 
avoidance. At some point the TCP connection starts to lose 
packets. After a timeout cwnd is drastically reduced to one and 
the slow start, congestion avoidance cycle repeats. After 3 
DUPACKs cwnd is halved and the congestion avoidance phase 
is entered [1]. 

The TCP sender computes the minimum of the congestion 
window and the advertised window in order to implement both 
flow and congestion control. In particular, it computes the 
Effective Window W as follows   

W=MIN(Cwin,Adidn)−OutstandingPackets  (2) 

where  

OutstandingPackets= LastByteSent−LastByteAcked 

are the in flight packets [7]. 
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III. MODELLING A GENERIC TCP FLOW 

In his milestone paper, Van Jacobson (1988) clearly states 
that: “A packet network is to a very good approximation a 
linear system made of gains, delays and integrators” [1]. This 
paper proposes a detailed model of a TCP/IP connection using 
(a) integrators to model network and receiver buffers and (b) 
delays to model propagation times.  

A data network is a set of store-and-forward nodes connected 
by communication links. A generic TCP flow goes through a 
communication path made of a series of buffers and 
communication links. 

The number of packets of the considered TCP flow that are 
stored at the generic i-th buffer along the communication path is 
given by the following dynamic equation: 

 ∫ ∞− −−= t dioibiutix ττττ )]()()([)(  (3) 

where ui(t)≥0 models the data arrival rate, bi(t)≥0 models the 
data depletion rate, i.e. the used bandwidth, and oi(t)≥0 models 
the overflow data rate, i.e. the data that are lost when the buffer 
is full and the input rate exceeds the output rate.  

The dynamic equation of the generic communication link (i-1) 
connecting the (i-1)-th buffer to the next (i)-th buffer is a pure 
delay. In particular, letting bi-1(t) be the link input rate at the (i-
1)-th buffer and ui(t) be the link output rate at the next (i)-th 
buffer, it results: 

 )1(1)( −−−= iTtibtiu   (4) 

where Ti-1 is the link propagation time. 

Starting from the basic equations (3) and (4), we propose to 
model a generic TCP flow over an IP network as it is shown in 
Fig. 2. In particular, Fig. 2 shows a functional block diagram 
made of: 

1) The TCP connection receiver buffer of length xr(t), which 
is modeled using an integrator with Laplace transfer 

function 1/s. The receiver buffer receives the inputs ur(t), 
br(t), or(t), which represent the input rate, the depletion 
rate and the overflow data rate, respectively; 

2) The n-th buffer that the TCP connection goes through 
before reaching the receiver buffer, which is modeled 
using an integrator with output xn(t). The n-th buffer 
receives the inputs un(t), bn(t), on(t), which, again, 
represent the input rate, the depletion rate and the 
overflow data rate, respectively. It is important to notice 
that the depletion rate bn(t) reaches the next buffer (n+1), 
which is the receiver buffer, after the propagation time Tn, 
i.e. ur(t)= bn(t-Tn). Moreover, it should be noted that the 
input rate un(t) is equal to the depletion rate bn-1(t) at the 
previous (n-1)-th buffer, i.e. bn-1(t-Tn-1)= un(t), where Tn-1 
is the propagation time from the (n-1)-th buffer to the n-th 
buffer. Depletion rates are unpredictable because they 
model the best effort bandwidth available for a TCP 
connection when going over statistically multiplexed IP 
network. 

The series of buffers shown in Fig. 2 can be recursively 
augmented both in the left direction, to model up to the first 
buffer node encountered by the TCP connection, and in the 
right direction to model buffers n+j, with j=2,p encountered by 
ACK packets when going back from the receiver to the sender. 

By considering a closed surface that contains the TCP path 
going from the first to the last buffer modeled by a set of 
integrators indexed from 1 to n+p=m, where the m-th integrator 
models the last buffer encountered by the TCP along the 
connection round trip, we can invoke the flow conservation 
principle for the unique input rate, which is the TCP input rate 
u1(t), and the output rates that are: (a) bm(t), which models the 
bandwidth used by the TCP connection, i.e. the best-effort 
bandwidth as viewed by the considered TCP flow through the 
ACK stream; and (b) the overflow rates oi(t), for i=1,m, which 
represent packets that are lost at each buffer along the path 
connection. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Dynamic block diagram of a generic TCP/IP flow 
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In equations, we can write the number x(t) of packets 
belonging to the considered TCP flow and stored into the 
network by adding packets stored at each buffer along the path: 

 ∑
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Substituting (3) in (5) and considering the (4) it turns out 
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Eq. (6) states that the network storage is equal to the integral 
of the TCP input rate u1(t) minus the output rate bm(t) leaving 
the last buffer of the path, minus the sum of the overflow rates 
oi(t), minus the sum of packets that are in flight over each link i. 

Since the TCP implements an end-to-end congestion control 
that does not receive any explicit feedback from the network, it 
is not possible for the controller to know terms in (6). Thus, we 
consider the sum of the in flight packets plus the stored packets, 
which we call the total network storage tx : 
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Thus, we can write 
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By considering that the TCP establishes a “circular flow”, i.e. 
that the data input rate comes back to the sender as an ACK 
rate, it can be said that bm(t) models the rate of ACK packets. 
Thus we can write: 

)()(1)( ttoTtutmb −−=  (8) 

which says, in mathematical words, that the ACK rate is equal 
to the input rate, delayed by the round trip time, minus the loss 
rate. By substituting (8) in (7) it turns out: 
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Equation (9) states that the network total storage is equal to the 
integral of the input during the last round trip time T. 

IV.  MODELING THE TCP FLOW AND CONGESTION 
CONTROL 

This section aims at showing that the closed loop control system 
depicted in Fig. 3 implements both the TCP flow and congestion 
control. In details, the following variables and blocks are shown:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Functional block diagram of the TCP flow and congestion control 
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(1) The receiver queue length xr and the receiver capacity r1 provide 
the term r1−xr (i.e. the Advertised Window), which reaches the 
sender after the propagation time Tfb that is modelled in the 

Laplace domain by the transfer function fbsT
e
−

; 
(2) The set point r2(t) represents a threshold for the total 

network storage, which is modeled by the queue xt(t); 
(3) The minimum block takes the minimum between the 

Advertised Window and )(2 tr ; 

(4) Delays T1i and Tir model the time delay from the sender to 
the generic node i and from the node i to the receiver, 
respectively; the forward delay from the sender to the 
receiver is Tfw= T1i + Tir;  

(5) The controller transfer function  

)1(1
)(

sTe
s

k
k

sG
−−+

= , (10) 

which contains the proportional gain k and the Smith 

predictor ssTe /)1( −− , where T is the round trip time 

sum of the forward delay Tfw and the backward delay Tfb. 
Notice that the role of the Smith predictor is to overcome 
the delay T, which is inside the feedback loop and is 
harmful for the stability of the closed-loop control system 
(Mascolo, 1999).  

Notice that the buffer xt in Fig. 3 can model both the total network 
storage of packets but also it can model the generic buffer xi  that is the 
bottleneck of the TCP connection at time t; moreover, a moving 
bottleneck is easily captured by the model through delays T1i and Tir 
where i is the generic moving bottleneck. 

In order to show that the block diagram in Fig. 3 models the TCP/IP 
flow and congestion control, first we will assume that the bottleneck is 
at the receiver and then that the bottleneck is inside the network. 

A. The TCP Flow Control 

By assuming that the bottleneck is at the receiver, it results: 
min(Adwnd,r2(t))=Adwnd, ur(t)=u1(t-Tfw) and ot(t)=0. In other 
words, the connection is constrained by the receiver, and the 
input rate reaches the receiver after the forward delay without 
network queuing, that is bt(t)=u1(t-T1i). Under these conditions, 
Fig. 3 can be transformed into Fig. 4 that models the TCP flow 
control. The following propositions can be shown. 

Proposition 1: The Smith controller (10) implements the TCP 
flow control equation (1). 

Proof: To find the input rate u1(t) computed by the TCP 
sender we use standard Laplace techniques, that is, we compute 
the Laplace transform of the input rate: 
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By transforming back to time domain it results: 
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By considering that  
 

=−−− )()(1 fbTTrxfbTTr Advertised window 

and that  
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Equation (11) gives the classic window-based flow control 
equation (1), where ktuW /)(1= . By considering that 

TWtu /)(1 =  relates the rate and the window of a window-based 

control, it results 1/k=T. 
Notice that the outstanding packets automatically take into 

account the round trip time T that in general can be time 
varying due queuing delays. In the case of flow control T is 
constant since it is assumed that there is no congestion inside 
the network which implies that network queuing delay is zero 
and round trip time is pure propagation delay.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4: Functional block diagram of the TCP flow control 
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Proposition 2: The TCP flow control equation (11) 
guarantees that the receiver queue is always bounded by the 
receiver capacity 1r . i.e. 

1)( rtrx <  for any t 

Proof: The queue length can be computed by exploiting the 
superposition property of linear systems. In particular, it is easy 
to compute the input-output transfer function from R1(s) to the 
receiver queue length Xr(s) that is: 
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and the transfer function from Br(s) and Or(s) to Xr(s) that is: 
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By assuming )(11)(1 trtr ⋅= , where 1r  is the receiver buffer 

capacity and 1(t) is the step function1 that models a connection 

starting at t=0, there results: 
s
r

sR 1)(1 = . By exploiting the 

superposition property of linear systems and by transforming 
back to time domain there results: 
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which satisfies the condition 
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since or(t), br(t) are always non negative. This concludes the 

proof.  
 

Lemma 1: Proposition 2 guarantees or(t)=0 for any t.  

Proof: Proposition 2 proves that the receiver queue length is 
always upper bounded by the receiver queue capacity, which 
implies that receiver overflow is always avoided, i.e. or(t)=0 for 
any t. 
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B. The TCP Congestion Control 

By assuming that bottleneck is localized inside the network, 
there results min(Adwnd,r2(t))= r2(t) and we can ignore the 
outer feedback loop. Therefore, Fig. 3 can be transformed into 
the equivalent one shown in Fig. 5, which models the TCP 
congestion control.  

 
Proposition 3: The Smith controller (10) implements the TCP 

congestion control equation (2). 

Proof: By assuming that the bottleneck is inside the network, 
there results: min(Adwnd,r2(t))= r2(t). From Fig. 5, the output 
of the Smith predictor in the Laplace domain is:  
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By transforming back to time domain it results: 
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Therefore the output of the controller is: 
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that can be rewritten as  
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Equation (13) gives the classic window-based congestion 

control equation (2), where ktuW /)(1= , and r2(t)=cwnd. This 

concludes the proof. 
 
Remark 1: It should be noted that (12) and (13) are the rate-

besed and window-based versions of the same control equation. 
 
Proposition 4: The TCP congestion control equation (13) guarantees 

a total network storage xt that is always bounded by the threshold 
0)(2 >tr , i.e.: 
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Proof: From (9), the total network storage is:  
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Since u1(t) and q(t) are always non negative, and r2(t) is strictly 
positive, from the control law: 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Functional block diagram of the TCP congestion control 
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it turns out )()()(2 ttxtqtr =≥ , which concludes the proof. 

Lemma 2: If a TCP flow finds in each buffer it goes 
through a space of ci  packets, where ci>  r2(t) for any t and i, 
then the Proposition 4 guarantees ot(t)=0 for any t. 

Proof: From Proposition 4, which proves that )(2)( trttx ≤ , 

and assumptions of Lemma 2, the proof follows directly. 

V. MODELING RENO OR WESTWOOD TCP BY INPUT SHAPING 

In this section we show that the dynamic model depicted in 
Fig. 5 is able to model successful variants of TCP congestion 
control, such as for example Tahoe/Reno [1] or the recent 
Westwood TCP [12]. Other TCP variants, such as Vegas or 
Santa Cruz, could also be modeled in the same unified 
framework. 

We have seen that the congestion control algorithm aims at 
estimating the available bandwidth using a probing 
mechanism. The classic TCP probing mechanism, which is 
currently used in all successful variants of the TCP such as 
Tahoe/Reno, New Reno or Westwood, comprises two 
mechanisms: the slow-start phase, which exponentially 
increase the congestion window up to the ssthresh, and the 
congestion avoidance  phase which linearly increase the cwnd 
when cwnd≥ ssthresh. Now we show that both these 
mechanisms can be modeled in the control theoretical 
framework reported in Fig. 5 by properly shaping the 
controller input r2(t)=cwnd. 

A. The Reno Algorithm 

The TCP Reno slow-start phase can be modeled by setting 
the reference input r2(t) as follows: 
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T
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where the initial window r0  is generally equal to 1 or 2 [19]. 
TCP Reno enters the congestion avoidance phase when 
r2(t)=ssthresh at )0(2log1 rssthrehTt −= . This phase can be 

modelled by setting the reference input r2(t) as follows: 
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The TCP probing phase ends when 3 DUPACKSs are 
received or a timeouts happens, which indicate that the 
network capacity has been hit. In these cases the cwnd 
behavior can be modeled using the following settings for r2(t): 
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After 3 DUPACKs at t  k 
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B The Westwood algorithm 

TCP Westwood employs the same probing mechanism of 
Reno. It differs from Reno because of the behavior after 
congestion. In fact, Westwood sets the cwnd and ssthresh 
using an end-to-end estimate of the network bandwidth bm(tk) 
available at time of congestion. In particular, the Westwood 
TCP window behavior after congestion can be modeled as 
follows: 
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VI. DESIGNING A TCP-FRIENDLY RATE CONTROL 
The TCP congestion control is window-based. As a consequence, 

it sends packets in bursts. Burstiness degrades the performance of the 
control algorithm and makes it unsuitable for application such as 
audio and/or video where a relative smooth rate is of importance 
[18,28]. To overcome the mentioned problem, rate-based control 
algorithms have been proposed [24],[29]. A key requirement that a 
new rate-based congestion control algorithm must satisfy is 
friendliness towards TCP, i.e. it must share network bandwidth with 
TCP fairly. The idea of TFRC is to enforce and guarantee friendliness 
by using the TCP long-term throughput equation [30] to compute the 

input rate. This approach could reveal to be unfriendly since a TFRC 
sets instantaneously the rate that, in similar conditions, a TCP flow 
would reach only in long-term conditions [31,24]. 

This section sketches how the analysis developed in this paper can 
be used to design a TCP friendly rate-based congestion control.  

For that purpose we start from the TCP congestion control 
equation in rate-based form, which is  

 ( )gpacketsoutstandincwndktu −=)(1  (14) 

In order to propose a rate-based congestion control that is friendly 
to TCP, we propose the exact rate-based version of the TCP Reno 
congestion control by properly setting cwnd=r2 in (14) to match the 
increasing/decreasing mechanism of Reno. 

A Exponential probing corresponding to the  slow-start phase 

This phase aims at quick probing of network capacity and 
corresponds to Reno slow -start phase. It is obtained by setting the 
controller input r2(t)=cwnd in (14) as follows: 

T

tt

trcwnd

0

2)0(

−

⋅=      while cwnd ≤ ssthresh 

where t0 is the last update time, T is the round trip time and r(t0) is 
equal to one or two [19]. 

 

B Linear probing corresponding to the congestion avoidance 
phase 

This phase aims at gentle probing of network capacity and 
corresponds to Reno congestion avoidance phase. It is obtained by 
setting the controller input r2(t)=cwnd in (14) as follows: 

T

tt
tcwndcwnd 0)0(

−
+=     when cwnd > ssthresh 

After a congestion episode (timeout or DUPACK) the controller 
input r2(t)=cwnd in (14) is set as follows 

After a timeout a t  0 
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Enter the exponential probing 
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VII. CONCLUSIONS 

This paper has developed a classical control theoretic approach to 
model the dynamic behavior of TCP congestion control. It has been 
shown that (1) a proportional controller plus a Smith predictor 
provides an exact model of the Internet sliding window flow and 



congestion control; (2) a model of successful TCP congestion control 
algorithms, such as classic Reno or recent Westwood TCP, can be 
derived by proper shaping of the controller reference signal. In order 
to show the utility of the proposed model, an application to the design 
of a TCP friendly rate control algorithm has been sketched. 
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