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Abstract—In this paper, we propose an MMPP (Markov Modulated Pois-
son Process) traffic model that accurately approximates the LRD (Long
Range Dependence) characteristics of Internet traffic traces over the rel-
evant time scales.

Using the notions of sessions and flows, the proposed MMPP model mim-
ics the real hierarchical behavior of the packet generation process by Inter-
net users.

Thanks to its hierarchical structure, the proposed model is both simple
and intuitive: it allows the generation of traffic with desired characteris-
tics by easily setting few input parameters which have an intuitive physical
meaning.

Results prove that the queuing behavior of the traffic generated by the
MMPP model is coherent with the one produced by real traces collected at
our institution edge router under several different traffic loads.

Due to its characteristics, the proposed MMPP traffic model can be used
as a simple and manageable tool for IP network dimensioning, design and
planning.

I. INTRODUCTION

The fact that packet flows arriving at Internet routers (both
edge and backbone) cannot be accurately modeled by Poisson
processes is widely accepted, and has been discussed in a vast
literature (see for example [1], [2], [3], [4], [5])- One of the
main characteristics of Internet traffic, probably the one with
the most impact on planning and dimensioning, is the Long
Range Dependence (LRD) of the distribution of several traf-
fic parameters (e.g., packet inter-arrival time, amount of data
transferred per time unit, etc.). This LRD means that Inter-
net traffic has some sort of memory; however, long term cor-
relation properties, heavy tail distributions, and all other char-
acteristics of Internet traffic, are meaningful only over a lim-
ited range of time scales. For instance, any correlation prop-
erty on time scales smaller than the packet transmission time
has no physical meaning. Similarly, heavy-tails of distributions
describing file lengths, become meaningless beyond the limita-
tions imposed by storage media. Although a number of traffic
models have been derived by fitting real measured Internet traf-
fic traces (we discuss some of them in Section 1), they seldom
allow the generation of traffic with desired characteristics. On
the contrary, a model of Internet traffic, in order to be effectively
used for network dimensioning, must be simple, easy to under-
stand, and, most important, must be controlled through a small
number of parameters, whose influence on the generated traffic
is predictable, at least from a qualitative point of view.
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In this paper, we propose a simple Markovian model of Inter-
net traffic, that matches very well the characteristic of the Inter-
net traffic observed at an Edge Router, and resulting from the ag-
gregation of many individual packet flows. The model is based
on Markov Modulated Poisson Processes (MMPPSs), and aims
at providing a description of the traffic generation process as
close as possible to the typical behavior of real Internet applica-
tions. The model employs the notion of three entities: sessions,
flows and packets; which act at different time scales, and mimic
the real behavior behind the interaction between users, proto-
cols, and the network. The model has five parameters which are
very simple to tune, so as to either fit the characteristics of a real
trace, or generate traffic with known statistical properties. Three
of the parameters are mapped directly on average traffic charac-
teristics, such as the average load and the average flow size; two
parameters are used to shape the correlation properties of the
traffic. This tunability feature, combined with the simplicity of
the model, makes it a very effective synthetic generator of ag-
gregate Internet traffic, that can be used to predict the network
behavior as the traffic characteristics change.

Finally, besides being very efficient to simulate in complex
networking scenarios, the MMPP traffic model also allows ana-
lytical solutions of its queuing behavior to be derived in simple
cases. Under some simple scenarios of practical interest, these
analytical solutions are very efficient, and provide a useful alter-
native to simulations.

Summarizing, the contributions of this paper are the follow-
ing:

« an MMPP model of Internet traffic is proposed

« the accuracy of the MMPP model is proved by comparing the
characteristics of synthetic traffic to those of real traces

o the MMPP model is shown to be useful for network planning
and dimensioning by comparing the performances of queues fed
by either synthetic traffic or real traces

« an analytical model of a queue fed by the MMPP traffic model
is solved

The rest of this paper is organized as follow. Section 11 shortly
discusses the literature that influenced our research. Section 111
describes the measured data we used for traffic analysis and for
the model validation. Section IV presents the MMPP model and
its ties to measurable traffic characteristics. Section V discusses
the performance of the model, highlighting its strengths, but also
discussing its limitations. Section VI finally concludes the pa-
per.



Il. RELATED WORK

In the early 90’s, two seminal papers [1], [2] showed that traf-
fic traces captured on both LANs and WANSs exhibit long range
dependence (LRD) properties, and self-similar characteristics at
different time scales. Those discoveries spurred a significant re-
search effort to understand data traffic in packet networks in gen-
eral, and in the Internet in particular. In addition, the evidence of
LRD and of self-similar properties in packet traffic drove many
researchers to abandon the usual Markovian assumptions in fa-
vor of newer and more complex traffic models. A number of at-
tempts were made to develop models for LRD data traffic. Here
we briefly summarize some of the main approaches proposed in
the literature.

Looking at packet traffic as a superposition of source-
destination traffic flows, simple ON/OFF models (or packet
trains models) were proposed as a first way to mimic LRD prop-
erties [3], [4]. Indeed, if the ON (OFF, or both) periods are gen-
erated according to heavy-tailed distributions, and the number
of multiplexed flows is large, then the resulting aggregate traffic
exhibits asymptotic self-similar properties with LRD behavior,
as proved in [4].

An M/G /oo queue with infinite variance service time ex-
hibits LRD properties in the number of active servers [6]. Since
the heavy-tailed distribution of file sizes was measured on stor-
age devices [5], [7], [8], and interpreting it as either the ON
period duration or the service time of a file transfer, these two
models have often been considered as a good explanation of
LRD at packet level. At the same time, other recent studies [9],
[10] indicate instead that traffic properties are rooted in the TCP
congestion control mechanism, which induces LRD properties
in the aggregate traffic resulting from the superposition of inde-
pendent sources. Others underlined that TCP induces correla-
tion at packet level on a limited range of time scales [11]. The
statistical analysis of real traffic traces, due to the significant
amount of collected data and of research projects, gave new im-
pulse to traffic modeling. Among the numerous generic LRD
models proposed in the literature, Fractional Brownian Motion
(FBM) received a lot of attention, since its Gaussian nature helps
in the study of the queuing behavior [12], [13]. However, this
model presents a restrictive correlation structure, that fails to
capture the short-term correlation of real traffic and its rich scal-
ing behavior. Therefore, many research efforts were devoted to
Multifractal models (see [14]), whose attractiveness is due to
their rich scale-invariance properties. Indeed, previous analyti-
cal works, such as [7], [8], [15], [16], [17] suggested Multifrac-
tal models as possibly being the best fit to measured data. ‘Cas-
cades’, a multifractal subclass, [18], [19] are also extensions of
self similar models and capture traffic behavior at all meaning-
ful time scales. While these models give good approximations
of the LRD properties of Internet traffic, they are difficult to
manage, due to their analytical complexity.

Wavelet decomposition has been widely used as a natural ap-
proach to study scale invariance, but only recently introduced in
the field of data networks. There are many examples of measure-
ment based traffic models, which try to fit the LRD properties of
real traffic (see for example [20], [21]). While these models are

computationally very efficient, they are complex and difficult to
tune, due to the lack of a mapping between the traffic parameters
and the model coefficients.

Chaotic map models [22], [23] were proposed as a determin-
istic evolution of systems governed by a set of behavioral rules.
The derived models are simple, but it is often difficult to under-
stand the relationship between the model and real traffic param-
eters.

FARIMA models [24] are widely used in video trace model-
ing, and can be used to generate LRD sequences. These models
are derived by filtering white Gaussian noise, and capture both
the short and the long period correlations of traffic. However,
the models are quite complex, and their structure makes it very
hard to understand the relationship among the filter coefficients
and the real traffic data.

All these traffic characterization works deviate considerably
from classical Markovian models which continue to be widely
used for performance evaluation purposes with good results
[25], [26], [27], [28]; in the above works for example, the
Markov Modulated Poisson Process (MMPP), has been consid-
ered as the best Markov process to emulate LRD [26] and scale
invariance [25], multifractality in particular. However, in [27],
[28] it was also pointed out that, obviously, an MMPP does not
exhibit long-term correlation; the authors therefore defined the
local Hurst parameter, using an approximate LRD definition,
valid on a limited range of time scales.

Another approach to model Internet traffic involves the em-
ulation of the real hierarchical nature of network dynamic; in
[29], each of the model components was fitted to real objects,
such as the distribution of both TCP flows and web pages size,
and the arrival distribution of pages and flows. In this paper, we
follow a similar approach, but instead of trying to fit all possi-
ble distributions to the measured one, we use a much simpler
Markovian definition.

In spite of the many proposed traffic models with LRD char-
acteristics, very little work appeared in the field of network de-
sign and planning, or network performance analysis, based on
LRD traffic models. This is mainly due to the difficulty in
handling the complex mathematical structure of the stochastic
processes on which those traffic models are based. Moreover,
in [30] it was recently shown that the long-term correlation of
traffic beyond a certain threshold does not influence the perfor-
mance of a system, so that simple models where correlation is
limited (such as MMPP models) can be successfully employed.

The results in [31], [32] also provide support to the possibil-
ity of using Markovian traffic models in packet networks, show-
ing that bandwidth sharing in packet networks is insensitive to
both the flow size, and the flow arrival process, under the quite
commonly accepted assumption (see also [2], [3]) that session
arrivals are Poisson.

All of these different approaches reach similar conclusions
using different techniques. The objective always is to take into
account as accurately as possible the real traffic behavior, in
order to be able to: i) use more reasonable tools for network
planning, and ii) explain the links between causes and effects of
network traffic phenomena.



I1l. TRAFFIC MEASUREMENT AND ANALYSIS

In order to collect traffic traces, we observed the data flow on
the Internet access link! of our institution, i.e., we focus on the
data flow between the edge router of Politecnico di Torino and
the access router of GARR/B-TEN [33], the Italian and Euro-
pean Research network. For traces collection and processing we
used t cpdunp [34] and Tst at [35], [36]. Tst at is a new
software tool developed at Politecnico di Torino, which analyzes
traces, and derives traffic characteristics at both the IP and TCP
levels. For the analysis at the TCP level, Tst at rebuilds each
TCP connection status by looking at the TCP header in the for-
ward and backward packet streams. In order to do so, Tst at re-
quires as input a trace collected on an edge node, such that both
data segments on the forward stream and ACKs on the backward
stream can be analyzed. When Tst at observes a TCP connec-
tion opening and closing, it marks the flow as complete, and pro-
ceeds by analyzing it. Additional information about Tst at and
statistical analysis performed on collected traces can be found
in[35] and [36].

The Politecnico LAN comprises approximately 7,000 hosts;
most of them act as clients, but several servers are also regularly
accessed from outside hosts. Data were collected on files stor-
ing 6 or 3 hours long traces (to avoid exceeding the File System
limitation on the file size), for a total of more than 100 Gbytes
of compressed data. Traces were collected during different peri-
ods, which correspond to different phases of the network topol-
ogy evolution. In this paper, we present results considering two
periods which are characterized by a significant upgrade in net-
work capacity:

» April 2000, from 4/11/2000 to 4/14/2000: the bandwidth of
the access link was 4 Mbit/s, and the link between the GARR
network and the corresponding US peering was 45 Mbit/s

« February 2001, from 2/1/2001 to 2/19/2001: the bandwidth of
the access link was 16 Mbit/s, and of the link between the GARR
network and the corresponding US peering was 622 Mbit/s.
The campus access link was a bottleneck during April 2000,
while it was not during February 2001. The same consideration
applies to the GARR-US peering capacity, which plays a key
role, since most of the traffic comes from US research sites.

Among all the traces we collected, we report here results from
four traces, which we consider representative of different net-
work scenarios. Table | summarizes the key parameters of the
selected traces; the last two columns report the number of sam-
ples in a trace, i.e., the number of IP packets and of TCP flows.

Since our campus network can be mainly considered as a
“client” network, i.e., hosts in the network are mainly desti-
nations of information, in the remaining of this paper we will
present results considering incoming streams of data only, both
at the TCP flow level and at the IP packet level.

A. Definitions

Several different definitions of LRD exist (which in general
are not equivalent; see for example [37]). We recall in this sec-
tion the definition we use in this paper, which is the one pro-
posed in [38].

1The data-link level exploits an AAL-5 ATM virtual circuit (OC-3).

TABLE |
SUMMARY OF THE ANALYZED TRACES

Name Date Start Stop IP packets | TCP flows
time | time (108) (10%)
Peak’01 2 Feb 01 10:52 | 13:52 11 540
Night’01 2 Feb 01 04:52 | 07:52 0.43 30
Peak’00 13 Apr00 | 08:10 | 14:10 12 564
Night’00 13 Apr00 | 02:10 | 08:10 0.92 79

Definition (Long Range Dependence)
Let { X} } rez be a wide sense stationary random sequence, p its
mean, -y(n) its autocovariance function, and f(v) v € [—m, ]
its spectral density,

E[Xp]=p 1)
E[(Xx — p)(Xpgn —p)] =7(n), n€Z )
f0) = 5 Yo ey (n) ©)
v(n) = [T, fw)e=#"dv (4)

{ Xk }rez is said to be Long-Range Dependent if
y(n) ~an®', n = o0, a€(0,1) (5)

orif

f) ~¢lv|™%v—0, a€(0,1) (6)

where f(z) ~ g(z) as ¢ — xo means lim,_,,, f(z)/g(z) = 1.
Equations (5) and (6) are equivalent if v(n) is monotone. In the
following we use the definition in (6), that is based on two pa-
rameters: (a,¢). The parameter a € [0, 1) is the dimensionless
scaling exponent, and describes the “intensity” of LRD; for a
non-LRD stationary process, a = 0 at large scales. The param-
eter ¢ € Rt has the same dimension of the variance of the pro-
cess and describes the quantitative aspect of LRD often referred
to as the LRD size. LRD implies that the sum of correlations
over all lags is infinite; however, individually, their sizes at large
lags are proportional to ¢, and can be arbitrarily small. LRD
is usually associated with self similar processes with stationary
increments (H-sssi) defined as follows.
Definition (Self-Similarity)

Let {Y'(¢),t € R} be a random process; {Y (¢) is said to be H-
self-similar (H-ss) if

(Y(t),t e Ry £ {r~HY(rt),t e R}, ¥r e RY, H>0

21fY'(¢) has stationary increments { X }xez, Xt = Y (k—h)—
Y (k) is LRD with

a=2H-1 ifH e (0.5,1) )

The parameter H is known as the Hurst parameter. When con-
sidering the process of the increments of a self similar process
with stationary increments, relationship (7) holds; hence, it is
common practice (though not completely proper) to use the pa-
rameter H when discussing LRD, and we stick to this practice.
Clearly, a non-LRD process has H = 0.5, while Hurst param-
eters larger than 0.6-0.8 are normally assumed as an indication
of strong LRD.

2The equality is for finite dimensional distributions



B. Trace Analysis

In order to estimate the LRD properties of the stochastic pro-
cess of interest, we use the wavelet-based approach developed
in[38], [39] and the the tools presented there, that are usually
referred to as the AV estimator. We also employ the code made
available from the authors in [40]. Other approaches can be pur-
sued to analyze traffic traces, but the wavelet framework has
emerged as one of the best estimators, as it offers a very versa-
tile environment, as well as fast and efficient algorithms.

Since traffic traces are finite, and their asymptotic behavior
cannot be derived, we always limit the analysis between two
scales (finf, jsup)- N order to evaluate LRD parameters, we use
the Log-Scale Diagram, which is essentially a log-log plot of the
mean square values estimates of the wavelet coefficients zJ, ver-
sus the scale 5. Since 277 has the dimension of a frequency, j is
generally called octave. Through the Log-Scale Diagram, it is
possible to identify the presence of LRD and determine the cut-
off scales (jint, Jsup) at which LRD ‘begins’ and ‘ends.” Within
these scales, an LRD process Log-Scale Diagram is linear with
coefficient . Indeed, for all processes, jgp is limited by the
trace length, and ji,¢ corresponds to a scale of a few hundreds
milliseconds, in our measures.

Among all the possible metrics that can be derived from the
traces, we selected as most representative of the traffic charac-
teristics:

« the (packet and flow) inter-arrival time processes I (k)

« the (packet and flow) counting processes Nt (n), obtained by
counting the number of arrivals in atime interval [nT, (n+1)T);
we use three values of 7: 1,0.1,0.01s.

Combining the three tools (Tst at, t cpdunp, and AV) we
analyzed the metrics defined above at both the TCP flow and IP
packet levels.

C. Flow and Packet Level Analysis

Given a trace and a process under analysis, the AV estimator
produces estimates of three main parameters: the Hurst param-
eter, the ¢ factor and the mean value. Estimates are denoted by
Hy, &7, and 1/A; when traces are analyzed at the flow level;

and by H,, é,, and 1/A,, for the packet level analysis. Results
for the four traces we consider are reported in Tables Il and 11
for the flow level analysis and for the packet level analysis, re-
spectively. In the tables, as previously mentioned, I denotes the
interarrival time process, N the counting process in time inter-
vals whose duration is equal to 7.

Apart from the obvious consideration that during peak hours
arrival rates are much higher than during nights, a few obser-
vations are in order. First of all, notice that all processes show
similar values of the Hurst parameter, ranging from 0.71 to 0.88.
Indeed, H; is almost independent from the considered trace or

process; while Erp is slightly higher during peak hours (around
0.88) than during nights. These results hint to the fact that LRD
in packet networks is probably not due to high load. Moreover,
since the network characteristics of the four selected traces are
very different (different link speeds, different loads, different
patterns between peak and night hours), this can be taken as a

TABLE II
FLOW LEVEL ANALY SISOF TRACES
Trace Peak’01 Night’01
iy o Tyay [ | oo [ iy
[I[ms] ] 074 ] 824 [ 20.01 ][ 0.86 | 8491 [ 358.9 |
Nis 0.76 | 59.4 499 0.76 | 1.66 2.79
N100ms 075 | 2.01 4.99 0.73 | 0.07 0.28
Nioms 0.74 | 0.07 0.49 0.80 | 0.001 | 0.028
Trace Peak’00 Night’00
I [ms] 0.76 | 275.1 39.6 0.74 | 2414 | 2716
Nig 0.75 28.4 25.9 0.78 1.54 3.68
N1ooms 0.74 | 0.79 2.53 0.76 | 0.06 0.37
Nioms 0.75 | 0.015 0.25 0.78 | 0.001 0.04
TABLE Il
PACKET LEVEL ANALY SISOF TRACES
Trace Peak’01 Night’01
Hp | p | 1/Ap ﬁp | p | 1/Ap
[I[ms] [ 087 ] 001 [ 089 [ 071 [5-10-% [ 0.025 ]
Nis 0.88 5232 1113 0.73 457.8 40.06
N100ms 0.88 91.4 1113 0.72 16.6 4.00
Nioms 0.88 1.50 11.1 0.76 0.30 0.4
Trace Peak’00 Night’00
I:Ip p 1/[\10 ﬁp p 1/[\12
I [ms] 0.84 0.17 2.25 0.84 40.54 15.74
Nig 0.86 | 504.19 | 444.75 || 0.83 133.93 63.51
N100ms 0.87 | 1450 44.49 0.83 3.61 6.35
Nioms 0.88 0.23 4.45 0.87 0.04 0.63

strong indication that LRD is an intrinsic characteristic of the
Internet traffic and is not induced by network conditions; this
is coherent with the “Pareto effet” due to file size distributions,
assumed as a good explanation of LRD at packet level. A sec-
ond consideration concerns ¢, whose value is extremely variable,
and clearly connected to the absolute magnitude of the analyzed
process (indeed, it is connected to the mean square value of the
process itself). The last consideration is that the characteristics
of the measured traces do not change significantly from *00 to
’01; thus, in the sequel we will only present results for these
latter traces, that are more recent.

For the model development, besides the estimates mentioned
above, we also derived from the traces:

Np : the average number of packets per flow
:\,, . the packet generation rate of active flows (obtained as the
ratio between Np and the average flow duration).

IV. THE MMPP TRAFFIC MODEL

Today, Internet traffic is mainly generated by data transfers
that use the TCP protocol at the transport layer. We derive our
model by keeping in mind that, in layered architectures, the hu-
man actions on a terminal interface cause a sequence of events
and behaviors of the protocols at the various layers of the pro-
tocol stack. For example, a “click” on a web link causes the
generation of a request at the application level (i.e., an HTTP
request), which is translated into many transport level connec-
tions (TCP flows); each connection generates a sequence of data
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Fig. 1. Sessions, flows, and packets as seen by the model

segments that are transported by the network through IP packets.

According to this view, we propose a model whose behavior
is driven by entities which act at three different time scales. At
the application level, sessions correspond to bunches of infor-
mation transfers. Sessions generate flows which correspond to
TCP connections. Each flow generates a sequence of packets
injected into the network. Figure 1 sketches a realization of the
model; three sessions arrive, each one generates a given number
of flows, and each flow, in its turn, generates a given number
of packets, that will be multiplexed on links along the source-
destination paths.

In order to derive a model which emulates the behavior of
a given real trace, we now need to map the three model entities
(sessions, flows and packets) into entities which can be observed
in real traces. Packets and flows can be easily identified on the
real trace; in particular, a flow is a single TCP connection, which
starts by the three-way-handshake procedure and ends by the
closing procedure®. On the contrary, it is more difficult to pro-
vide a specific and unique definition of a session. Indeed, many
different definitions of a session could be proposed on the ba-
sis of traces. All the web pages downloaded by a user from the
same web server in a limited period of time can form a session; a
ftp connection from a user that requests many files from a server
can form a session; all the e-mail messages generated by a user
that replies to all the previously downloaded e-mails, or even
the user activating its connection to the Internet (for example by
switching on its computer), are all possible definitions of a ses-
sion. Thus, we have the following problem. On the one hand,
sessions are difficult to define, and to recognize in real traces.
On the other hand, we need a notion of session in order to ac-
count for correlation over long time scales, which a model based
on flows and packets alone cannot catch. We resort to defining
a session as a generic set of correlated flows that are submitted
to a network interface; then, we use the flow and packet levels
of the model to fit the metrics which are easy to measure on real
traces, and we specify the model session level so that the LRD
of the real traces is accurately approximated.

31n case no packets are observed for more than 30 min, the flow is declared
closed as well.

We now make the following assumptions concerning the be-
havior of sessions, flows and packets:

« Sessions are generated according to a Poisson process with
rate As; each session starts by generating a new flow and ends
when it generates the last flow belonging to the session.

« The number of flows generated by a session is a geometrically
distributed random variable with mean value equal to Ny.

« Flows belonging to the same session are generated according
to a Poisson process with rate A ; each flow starts by generating
a packet and ends after having generated the last packet of the
flow.

« The number of packets generated by a flow is a geometrically
distributed random variable with mean value equal to IV,,.

« Packets belonging to the same flow are generated according
to a Poisson process with rate A,,.

Due to the above assumptions, both the packet arrival process
and the flow arrival process are MMPP, whose memory is given
by two variables: the number of active flows, which accounts
for short term correlation, and the number of active sessions,
which determines correlation over long time lags. Observe that
the model analysis can also use the same formalism used in [41]

A. Setting the Model Parameters

The MMPP model is completely described by five parame-

ters:

s : the arrival rate of new sessions

Ay - the flow arrival rate per active session
Ap : the packet arrival rate per active flow
Ny : the average number of flows per session
N, : the average number of packets per flow.

In order to tune the model so that the generated synthetic traf-
fic emulates the characteristics of a real trace, we need to prop-
erly set the model parameters. The parameters IV, and A, are
simply set so as to match the packet and flow behaviors of a
given trace; i.e., they are set equal to the measured average num-
ber of packets per flow and average packet arrival rate per flow.
For what concerns Ny and A, since they are related to the ses-
sion behavior, they are harder to measure from traces. Thus, we
set Ny and A, so as to match the Hurst parameters H; and H,;
this is done by means of an iterative procedure described below.
Finally, given the session behavior, the parameter A, the flow
arrival rate per session, is simply set to match the average flow
arrival rate observed from the traces. The fitting procedure is
summarised in Fig. 2 (notice that, for our convenience, in the
fitting procedure we normalize the session arrival rate A, to the
flow arrival rate per session Ay, and denote the normalized ar-
rival rate by C):

The selection of Ny and C' by means of the fitting procedure
at steps 4—7 can be performed according to different definitions
of accuracy of the fit and to different criteria for the assignment
of new values to the parameters. The detailed procedure which
we followed is reported in Fig. 3.

The criteria to assign new values to Ny and C' were chosen
after having studied the sensitivity of the Hurst parameters H s
and H,, to changes of Ny and C' by means of the graphs shown
in Fig. 4. The Hurst parameter at both the flow and packet levels



1. From the traffic traces estimate H,,, Hy, Af, A, N,
2. Set N, = N,and \, = A,

3. Set the initial values Ny = 1 and C' = 1 (C is defined as
C = Xs/Ap)

4. Compute \, = ]’:,—’; and \; = 22

5. Generate a synthetic sequence with the same number of sam-
ples as the real trace

6. Estimate the Hurst parameter at both packet and flow level of
the synthetic trace and compare them with H,,, H;

7. If the fitting is good, the procedure ends else assign new val-
uesto Ny and C'and go to 4

Fig. 2. Fitting procedure to derive the MMPP model parameters from a mea-
sured trace

C=1,N;=1;
epsy = epsp = 0.05; fit=0;
while !(fit){

generate a synthetic sequence and estimate H ¢, Hp,
fit= (|Hy — Hy| < epsy) &&(|H, — Hy| < epsy);
if (Hf < Hf) then Nf = Nf + 5;

else if (H; > H;) then Ny = Ny — 1;

if (H, > H,) then C = 3 % C;

else if (H, < H,) then C = C/2;

Fig. 3. Selection of new parameters in the iteration

increases as N increases, consistently with the intuition that a
larger value of Ny introduces a higher degree of memory in the
system. Moreover, at the packet level, there is a higher degree
of memory and correlation since packets are generated by flows
which are generated by sessions. Let us now focus on C. The
larger C'is, the more bursty the generation of flows per session
is. The influence of C' on the Hurst parameter is quite complex.
At the flow level, a higher degree of burstiness tends to induce a
larger value of the Hurst parameter, while the opposite is true at
the packet level.

The fitting procedure requires only a few iterations (approxi-
mately 10 in our tests). In order to verify that the synthetic traffic
generated by the model accurately emulates the real traces, we
report in Table IV the characteristics of the synthetic traces mea-
sured by the AV tool when the model parameters are fitted to the
’01 traces; the values must be compared with those of Tables 1.
Observe that, thanks to the fitting procedure, the Hurst parame-
ters are well matched, while the values for the ¢ parameters are
less accurate, though the qualitative behavior is the same.

B. The Modulating Markov Chain

The Continuous-Time Markov Chain (CTMC) which modu-
lates the packet and flow arrival processes is defined by the state
variable 5 = (ny,n,), where ny and n, denote the number of
active flows and the number of active sessions, respectively. A
state-transition diagram of the CTMC model of the modulating
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Fig. 4. Impact of Ny on the Hurst parameters of the flow arrival process, for
different values of the normalized session arrival rate C = As /A ¢

process is reported in Fig. 5.

The transition from state (ny, n,) to state (ny — 1,n,) cor-
responds to the termination of a flow; its rate is nzuy, where
s = Ap/(Np — 1). The generation of a new flow makes the
chain move from state (ny,n;) to state (ny + 1,n,) with rate
BnsAy if the flow is not the last one of the session, and to state
(ng + 1,n, — 1) with rate (1 — B)nsAy if the flow is the last
one. The probability 5 that a generated flow is the last one of a
session is given by § = 1 — 1/Ny. In state (ny,n,) a session
starts with rate A; and generates a new flow. If the session is
composed of one flow only, the chain moves from (ny,n,) to
(ny + 1,n,) with rate (1 — B)A,; otherwise, the chain moves
from (ng,n,) to (ng + 1,n, + 1) with rate SA,.

The infinitesimal generator of the CTMC is infinite due to the
unbounded values that n, and n ¢ can take. Thus, in order to ana-
lyze the property of the MMPP or to evaluate the performance of
a queue fed by the synthetic traffic generated by the MMPP we
have two alternatives: i) we resort to simulation, ii) we truncate
the CTMC so that the infinitesimal generator matrix becomes
finite. In what follows we consider both cases. The criterion
used for truncating the CTMC is described in Section IV-C. For
the moment, assume that the CTMC has been truncated so that
the number of active flows varies in the range [f,., fa] and the
number of active sessions varies in [s,,, su].

We denote by {J(t),t € R*"} the finite CTMC ob-



TABLE IV
MODEL: FLOW AND PACKET LEVEL RESULTSFITTING THE 01 TRACES
Trace Peak’01 Night'01
oo [ [ [ o | /A
[I[ms] [ 074 ] 192 | 201 ] 0.84 | 7799 | 35638 |
Nis 0.71 76.7 49.8 0.82 0.51 2.81
Niooms || 071 | 227 | 498 || 0.83 | 7.6-1072 | 0.28
Nioms 0.78 | 0.013 | 050 | 079 | 1-.-10~* 0.03
Trace Peak’01 Night'01
Hy | Cp | 1/Ap Hy | Cp | 1/Ap
[I[ms] [ 0840038 ] 090 [[082] 1-10-% [ 0.025 ]
Nisg 0.87 5943 1113 0.87 35.2 40.06
N100ms 0.82 | 178.2 1114 0.79 2.05 4.01
Nioms 084 | 313 | 11.14 || 086 | 5-10°3 0.41
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Fig. 5. State-transition diagram of the Continuous-Time Markov Chain that

modulates arrivals

tained by truncating the MMPP according to the above
ranges. The state space is given by S = {(ng,n,) €
N, f < np < fu, Sm < ng < spr). The infinitesimal
generator @ € R™* "withn = (fpr— fm+1)- (spr—sm+1)
is given by,

Qf.n Qt 0 0
(fm +1)Q~ Qfpt1 QT
0= 9 (fm +2)Q™
' 0
: Qiy—1 QF
0 e M QT Qpy,
Q= 1] I,

QT =1 —=B)As Ny +B8Af N+ (1= B)As I + B If

0 1 0
0
: 1
0 . -0
0 0 0
sm+1 0
: 0
0 SM 0

I, I, N, Ny € Rlem—sm+1)x (sm—sm+1) T s the identity
matrix. I7 = I+

N, = diags{sm,sm +1,--+ ,sm}*

Qi = diags{—(smBAs + Xs + i pf), —[(sm + DA + Xs +
iuf]a" ’ 7_[(3M_1))‘f + As +i:uf]’_[sM)‘f +(1=8)As +

i pugl}, for fr <i < fur

Qfm = diags{—(sm,@/\f-}-)\s); _[(5m+1)/\f+/\s]; e 7_[(SM_

1))\f + )\s], —(SM)\f + /\s)}

Qyy = diags{—fupy,

,—fups}. Qs an ho-

mogeneous irreducible infinitesimal generator if 3 # 0,1. The
steady-state probability vector « is given by

where
The

Ap diags{ fm Is, (fm + 1) I, (fm +2) I,

e=(1,1,---
rate  matrix

Q=0 re=1

T

is A

€

X
R’n n’

C. Truncating the Modulating CTMC

To truncate the modulating CTMC, we have to trade-off be-
tween the opposite needs of i) reducing the dimension of the
CTMC as much as possible in order to make the solution ef-
ficient and fast, and ii) keeping the CTMC dimension large
enough so that the truncated chain accurately approximates the
original infinite one. In order to find a proper truncation crite-
rion, we first discuss the marginal distributions of n, and ny.

Let us focus on the number of active sessions, ns. Sessions
are generated according to a Poisson process with rate A,;. The
lifetime of a session, i.e., the time a session spends in the sys-
tem, is given by the sum of the interarrival times of the flows
generated by the session. Interarrival times between flows of a
session are i.i.d. negative exponential random variables X with
rate A¢. The lifetime Y of a session is thus given by,

Y

oo

=0

> B -B)X;

with

A

cee MIs}-

(8)

where {X;};en is a sequence of i.i.d. exponentially distributed
random variables. It can be easily shown that Y is negative ex-
ponential distributed with mean value E[Y]

p) =

B/A(1 = Bl

= E[X]5/(1 -

Since sessions are independent from

each other, the evolution of the number of sessions in the sys-
tem can be modeled by an M/M/oo queue, whose arrival rate

4The operator diags{z1, 2, -
whose elements along the diagonal are given by z1,z2, - - -

T

,Zn } defines a diagonal matrix in R*X™



is A; and whose mean service time is E[Y]. It follows that the
distribution of n, is Poisson with parameter 6 = A; E[Y] =
AsB/As(1 = B)].

We now consider the number of active flows, n¢. In order to
model the flow arrival process, we number flows according to
the order in which they are generated by the session they belong
to: A flow of type ¢ is the i—th flow generated by a session.
We model the flow arrival process by the infinite queuing net-
work reported in Fig. 6.a, where arrivals at queue 7 represent
the arrivals of type ¢ flows. The service time of a customer in
queue 7 represents the interarrival time between the i-th flow and
the (¢ + 1)—th flow of a session and is distributed according to
a negative exponential distribution with rate A;. Since type 1
flows are generated at the arrival of sessions, type 1 flows arrive
at queue 1 according to a Poisson process with rate A,. A cus-
tomer leaving queue 1 enters queue 2 with probability (1 — ),
which is the probability that the flow was not the last one of
the session. Since the departure process from an infinite queue
with Poisson arrivals is Poisson too, the arrival process at queue
2 is Poisson with rate (1 — 3)A,. Thus, the arrival process at
queue 4 is Poisson with rate 3~ \,. This queuing network is
equivalent to the queue with feedback shown in Fig. 6.b. Notice
that, as is well known, despite the arrival processes at all queues
in Fig. 6.a are Poisson, the infinite sum of the arrival processes
which is the process entering the queue with feedback in Fig. 6.b
is not Poisson.

Since the lifetime of flows in the system is negative expo-
nential distributed with rate u, the behavior of flows can be
described by a set of infinite M/M/oc queues, where the arrival
rate at queue i is equal to (1 — 8)*~1 )\, and the average service
time is given by 1/p¢; or equivalently by a queue with feedback
as the one in Fig. 6.b with py instead of A;. It results that the
distribution of n s, the number of flows in the system, is Poisson
distributed with rate A, /(Bus). Given that the marginal distri-
butions of n, and ny is Poisson distributed, we can truncate the
infinitesimal generator choosing (s, sar) and (f., far) such
that

> pa(k)=09 9
k€ {sm,,snr}

S o (k) =09 (10)
ke{fm,""fM}

where p,, (k) and py, (k) are the probability density functions
of n, and ny.

D. The Buffer Model (MMPP/M/1/m Queue)

For network planning and dimensioning, we are typically in-
terested in the performance of a queue which represents the bot-
tleneck of a network.

Besides the advantages of being simple to implement and ef-
ficient, a synthetic Markovian source as the one we propose has
the additional advantage of allowing a Markovian model of a
queue.

In general, the buffer model can be described by a
MMPP/GI/1/m queue, where the service time represents the
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Fig. 6. Sessions, flows, and packets as seen by the model

transmission time of a packet, and can be easily derived from
the capacity of the link and the distribution of the packet length.
The general service time distribution can be approximated by a
phase type distribution. However, for simplicity, we consider
the case of exponentially distributed service time; we validate
the exponential assumption in Section V and we discuss the ex-
tension to phase type service times at the end of this section.

By adopting an exponential service time distribution, we ob-
tain an MMPP/M/1/m queuing system. The stochastic process
which describes the dynamic of the system is a vector process
{Z(t),t € RY}, Z(t) = {R(t), J(t)}, where R(t) denotes the
number of packets in the queue, J(t) = (ns(t),ns(t)) denotes
the phase of the modulating chain and is a vector Markov pro-
cess too.

The state space of the considered Markov process is S =
{z=(r,ng,ns) € NP with 0< r< m, fr, < ny < farand
sm < ns < spr}. Theinfinitesimal generator of such a CTMC
is A,

AOO AO 0 e e 0
Ao A1 Ao :
A= 0 Ay,
. te . Az A1 AO
0 cee e 0 Ao Amm

where Ago = Q — A, Ao =A, A1 =Q—pul,— A Appm =
Q—plIn, A2 = pIn. Aoo, Aro, Ao, A1, A2, Amm, In € RP* T,
and I, is the identity matrix.

Z(t) is a finite QBD (Quasi Birth Death) process whose so-
lution has been studied in many papers, see for example [42],
[43], [44], [45]. We adopt the solution proposed by [44],
the Improved Logarithmic Reduction Algorithm (ILRA). Let
p = m A e/p and let the steady-state distribution be 7. We
are interested in the buffer length distribution 72 which can be
obtained from [44],

,m

I _ 4 o— Ji = =0, ---
wd —Wre—tgnéo]?{R(t) =r} r=0,



r =20 B™ + o S™ (I, — (SR)"]

where R, S are two matrix geometric terms and (zg, z,,) are
the solution of the two boundary conditions of the QBD finite

11)

process:
lom] _ ( Afg™ 43’:1] )
Aloml - jl0m]

ARl = Q- A+ 4)G(R) (12)
ALml — Rm AT, — G(R)] (13)
Aloml - gm-11 _ gp)A, (14)
Aloml - — W (8) + Ag — (SR)™ Ag[I, — G(R)] (15)
G(R) = [-(A+R A4,

W(S) = A1+ S A4

It can be shown that A% is an infinitesimal generator of a
CTMC with (zg, z,,) as a steady-state vector,

(.’L'(],.’Em)fi[o’m] =0, (xo,Zm) ( gl ) e=1
2

B, =
By =

Li+RY" R
m—1 qp m m—1 pp
Y ST—SmRY ™R

If p < 1, then " ' R" = (I, — R)™'(I, — R™), else, if
p>1,Y" S = (I, — S)~'(I, — S™), and the boundary
conditions can be simplified taking into account the load value.
The two terms R and S are two matrix geometric terms which
are the minimal nonnegative solution of the two equations:

0=R?As+ RA; + Ao (16)

0=5%4¢ +SA; + Ay 17)
Observe that (11) can be extended to the infinite buffer case,
which is the well known matrix geometric solution,

fr=xz0R", 7> 0 (18)

with boundary conditions:

Zo A([)%,m] = 0

zo[I —R] 'e=1

The solution of (11) and (18) becomes more and more diffi-
cult as the matrix dimension increases; thus, the use of efficient
iterative methods is a must [46]. The solution of the finite buffer
case is more complex than that of the infinite case, in terms of
both memory requirements and computation time. Indeed, the
finite case needs the computation of two matrix geometric terms
(instead of one) and the solution of a linear system twice as large
as in the infinite case. However, despite its complexity, the finite
buffer case must be solved in many cases of practical interest
as, for example, for dimensioning the buffer size, in which case
we typically need to compute the loss probability due to buffer

overflow. A nice feature of the method in [44] is that the loss
probability due to the buffer overflow can be directly evaluated
through the recursive formula,

7% = 7t (I, — V) (19)

T = Q—ert (20)
Vi = I,—[Li+pQ—A)"tert (21)
(@ — A~ QE ! (22)

Vin = Ay(—AT)I = Vi1 Ao(ATH]™Y (29)

This recursive formula is very useful because the computation
of the loss probability for the case of buffer size equal to m
provides, as a side product, the loss probability observed for all
values of the buffer size smaller than m; thus, it is very efficient
for network dimensioning.

As previously mentioned, the above problem can be easily
extended to consider phase type distributions of the service time
instead of exponential distributions. Such an extension requires
the introduction of a random process component which accounts
for the service phase. However, the increase of the dimension
of the involved matrices makes the MMPP/Ph/1/m queue hard
to solve in terms of time and memory requirements. Thus, in
what follows we consider only exponentially distributed service
times.

V. PERFORMANCE EVALUATION

The comparison of Table IV with Tables 11 and 11l indicates
that the proposed MMPP model captures the LRD characteris-
tics of the traffic we measured at the edge router interconnect-
ing the Politecnico di Torino network to GARR/B-TEN. This is
hardly a surprise, since we tuned the model to obtain this result.
It however indicates that the proposed simple MMPP model is
capable of exhibiting LRD behaviors over the time scales of in-
terest.

In this section we further evaluate the performance of the pro-
posed MMPP model in two ways: i) we study the behavior of
the synthetic traffic produced by the MMPP model when feed-
ing a buffer in front of a transmission link, and compare the
results against those produced by measured traffic traces, ii) we
investigate the predictability and tunability of the model when
used as a synthetic source of aggregate Internet traffic, i.e., we
discuss the model effectiveness in representing different traffic
scenarios.

The analysis in this section considers the 2001 traces, for
which the values of the measured parameters are reported in Ta-
bleV.

A. Queuing Analysis

In order to evaluate the accuracy of the model as a synthetic
traffic source, we consider a queuing system and we compare the
performance obtained by feeding the queue with the synthetic
traffic generated by the MMPP model with the results obtained
from the real trace. For comparison purposes only, and in order
to show the importance of introducing some memory in the input
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Fig. 7. Packet length distribution used in simulations

traffic model, we also plot the queue performance obtained when
Poisson traffic feeds the queue.

We first consider the case of infinite buffer. The service
time distribution reflects the packet length distribution measured
from the real traces, which is reported in Fig.7, and exhibits
the well-known multi-mode behavior, with peaks for very short
packets and for the different MTUs (Maximum Transfer Units)
in the network, with a dominating peak at 1,500 bytes, due to the
size of Ethernet frame. In order to evaluate the performance of
the queue under different values of the load, we change the av-
erage service time while keeping the packet length distribution
unchanged. Notice that the load of the queue has no relation
with the actual load of the link where the traces were collected.
The results for the synthetic traffic are obtained by simulating
the corresponding MMPP/GI/1 queue.

Fig. 8 reports the queue length distribution for the Peak’01
trace. The thin dashed line is obtained by using as input the mea-
sured trace, the solid line is obtained with the MMPP model and
the thick dashed line with a simple Poisson process whose rate
matches the average packet arrival rate measured on the trace.
Plots refer to four different loads: 0.9, 0.8, 0.7, and 0.6. For
the real trace, the tail of the distributions below 10~* becomes
noisy due to lack of samples. The buffering behavior of the
model matches quite well that of the measured traces, while, as
expected, the Poisson model underestimates the buffer level of
orders of magnitude. Notice that the accuracy of the MMPP
model predictions tends to increase for large values of the load,
which correspond to the most interesting cases for the system

Fig. 8.
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designer.

Similar results are shown in Fig. 9 for the Night’01 trace. In
this case, the accuracy of the model is less satisfactory, espe-
cially when the load is light. It must be noted, however, that this
scenario is both less interesting and somewhat more “artificial”
than the previous one. First of all, the number of points in the
measured trace is about 50 times smaller than during peak hours
(see Table I) and this explains why trace-driven curves are nois-
ier. Second, the real link load at night is extremely low, thus ar-
tificially forcing the load to values higher than 0.6 significantly
modifies the overall scenario. Yet, despite of this, the MMPP
model matches quite well the tail of the distribution, which is
typically the most crucial part of the curve.

We now look at the case of finite buffers. The results for the
MMPP model are derived analytically, by assuming that service
times are exponentially distributed. Fig.10 reports the queue
length distribution for a finite buffer queue driven by the same
arrival process as in the previous scenarios for the Peak’01 trace,
with p=0.9. The considered buffer sizes are B = 32, 64, 128,
256, 512 packets. Notice again the accuracy of the model in
evaluating the queue performance. The curves for the Poisson
traffic with different values of the buffer size are indistinguish-
able.

We now consider the typical dimensioning problem: the eval-
uation of the impact of the buffer size on the packet loss prob-
ability. Results are shown in Fig.11. Two curves refer to the
MMPP model. The solid line reports analytical results obtained
with the assumption that service times are exponentially dis-
tributed; the markers are derived from the model by simulation
using the same distribution of the service time as for the real
trace. The figure proves that the impact of the exponential as-
sumption for service times is marginal. Again, notice that ana-
lytical predictions are very accurate.

In terms of complexity, the numerical approach depends
mainly on the size of the matrices which describe the Markov
process. The computation of the steady-state distribution of the
MMPP is efficient because the matrix @ is sparse, and finding
the matrix geometrix terms is also efficient thank to the ILRA
solution method, even for very large matrices. On the contrary,
the computation of the boundaries can be a difficult task because
it requires solving a dense linear system.

B. Sensitivity Analysis

We now discuss the impact of the MMPP model parameters
on both the Hurst parameters and the queuing behavior. In par-
ticular, we focus on the effect of the average number of flows
per session, N, which represents the long term memory of the
model. We proceed as follows. We first derive the model param-
eters as described in Section IV-A. Then, we set a new value of
Ny and, accordingly, we change A, so that the average number
of flows generated in the time unit does not change. All the other
model parameters are kept unchanged. Observe that the load is
kept equal to the desired value (0.9) even if N, is changed, as

Fig. 9.
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shown by the following equations:

As
]E[Af] = /\s-i-/\f]E[TLs] =/\s+/\f;(Nf—1) (24)
= A (25)
E[Ap] = E[Af]IN, = Apr = Ap (26)

This result is obvious, if we recall that Ny and C' do not change
the first order statistic but they act only on the second order
statistics.

Results are shown in Fig.12 for different values of Ny.
Again, for comparison purposes only, we report the curve de-
rived with Poisson packet arrivals. The case Ny = 1 corre-
sponds to one flow only per session, which implies that the flow
arrival process is Poisson. Increasing the number of flows per
session makes the queue tail heavier: as Ny increases, the range
where the queue decay follows roughly a power law becomes
longer. Clearly, there is always a value beyond which the queue
decay is exponential and this value increases with N¢. Indeed,
the behavior of our model confirms the results obtained in [47],
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where the Hurst parameter of measured traffic, as well as the
queuing behavior of the same traffic, are fitted through the use
of phase type distributions.

Thanks to its simplicity and to the intuitive meaning of the
parameters, the model can be effectively used as a manageable
tool for IP network dimensioning and design. Indeed, having
proved that the model accurately represents real traffic behavior,
the model can be used to assess the performance of a system
under variable traffic conditions, by simply changing the value
of the parameters. Consider for example that for the network
design we are interested in evaluating the impact of different
traffic mixes on a finite buffer. We fix a value of Ny and mod-
ify accordingly IV, so that the average offered load to the buffer
is constant. This corresponds to traffic mixes composed by ei-
ther a small number of long flows or a large number of short
flows. Fig. 13 plots the loss probability for a finite buffer of
512 packets, and for average load equal to 0.7, 0.8, 0.9. The
Figure shows that the loss probability initially increases for in-
creasing values of Ny, but for values of Ny larger than about
5, the loss probability decreases. Indeed, the loss probability is
strictly related to the correlation in the packet arrival process:



for N close to one (and therefore for large values of N,), we
expect less correlation in the traffic mix, having just one long
flow per session, i.e., flows and sessions tend to coincide. Sim-
ilarly, large values of N force small values of N, which leads
to many one-packet long flows, i.e., flows and packets tend to
coincide, thus reducing correlation.

V1. CONCLUSIONS

In this paper we have proposed a simple MMPP Internet traf-
fic model that is capable of well approximating the traffic char-
acteristics measured at the edge router of our institution. The
model is based on a layered structure of sessions, that generate
flows, that finally generate packets.

The characteristics of the synthetic traffic generated with the
model match the LRD characteristics observed in the measured
traces over the time scales of interest. One of the interesting
features of the MMPP model is that it requires as inputs five pa-
rameters only. Three of these parameters can be directly mapped
onto average traffic parameters, such as the average flow arrival
rate, the average number of packets per flow, and the average
arrival rate of packets within flows. The other two parameters
define the notion of session, and are used to control the Hurst pa-
rameter of the synthetic traffic on the considered scaling range.

Most interesting is that the behavior of the synthetic traffic
in a queue with either finite or infinite buffer matches very well
the behavior of the measured traces. Thus, the proposed MMPP
model can be considered an accurate descriptor of aggregate In-
ternet traffic, and can be effectively used to dimension buffer
sizes and link capacities.

The key features of the proposed MMPP model are its sim-
plicity and its intuitive structure. While, on the one hand, these
features allow an accurate match of the characteristics of mea-
sured traffic, on the other hand, they allow the model to be used
by traffic engineers with only limited knowledge of the sophis-
ticated theoretical aspects of LRD processes.
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