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Abstract— In this paper, we highlight that multiple
bottlenecks can affect the performance of Active Queue
Management (AQM) controllers. These are usually con-
figured on a single bottleneck basis, as if each controller
were the only element regulating the TCP traffic along its
path. To see this, we consider a network scenario where
RED is configured at each router, according to previously
developed control theoretic techniques. These configura-
tion rules assure stability in a single bottleneck scenario.
Yet, we show that instability may arise when two link
become congested. We justify this result through a multiple
bottleneck model and give guidelines for new cooperative
AQM controllers, exchanging information about the nodes
congestion status.

I. I NTRODUCTION

AQM has been proposed to support end-to-end TCP
congestion control in the Internet [1]. AQM controllers
operate at the network nodes to detect incipient conges-
tion and indicate it to TCP sources, which reduce their
transmission rate in order to prevent worse congestion.
Usually packet drops are used for congestion indication.

Many AQM schemes have been proposed [2], [3],
[4], [5]. The proposed algorithms usually rely on some
heuristics and their performances appear to be highly
dependant on the considered network scenario. Hence,
parameter tuning is very difficult (see for example [6],
[7], [8], as regards the well-known Random Early De-
tection -RED- algorithm). Despite the wide literature
on AQM, nobody has explicitly taken into account the
distributed fashion of TCP flows control across the
network: as a matter of fact TCP flows may turn to
be controlled at the same time by two or more nodes
acting independently according to their AQM settings.
According to our opinion, this can hardly affect AQM
algorithms performance.

In order to support our thesis we consider RED con-
figuration criteria proposed in [9]. According to the best
of our knowledge, these criteria are the only ones based
on a theoretical analysis rather than on plausible thumb
rules. In [9] the authors start from the single bottleneck
nonlinear model for TCP sources proposed in [10].
They linearize it and apply linear feedback control to
obtain some RED configuration criteria which guarantee
stability under bounded traffic variation (number of flows
and round trip time). In this paper, we propose a coun-
terexample to show that RED controllers, configured
according to [9], do not prevent from instability if two
nodes face congestion at the same time (what we called
multi-bottleneck scenario). In other words, we highlight
the limits of AQM configuration criteria, that rely only
on local information.

This paper is organized as follows. Section II rec-
ollects the RED operation and some results from [9],
which will be referred to in the following sections. In
Section III we present a multi-bottleneck network sce-
nario, that exhibits instability. The presence of instability
is derived from performance metrics obtained through
simulations.

In Section IV, we provide an analytical insight to bet-
ter understand the experimental results. In Section V, we
discuss issues concerned with i) the robustness of single
bottleneck configuration criteria, and ii) the development
of new AQM schemes, which take into consideration the
distributed nature of AQM control. The last item deals
with cooperative controllers, that exchange information
about their congestion state. Finally, conclusive remarks
and further research issues are given in Section VI.
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II. SINGLE BOTTLENECK MODEL

The starting point in [9] is the model described by the
following coupled, nonlinear differential equations:

Ẇ (t) =
1

R(t)
− W (t)W (t−R(t))

2R(t−R(t))
p(t−R(t)) (1)

q̇(t) =
W (t)

R(t)
N(t)− 1q(t)C (2)

where1q = 1 if q > 0, 1q = 0 otherwise. Symbols
used in the model above are summarized in the following
table.

W expected TCP window size (packets);
q expected queue length (packets);
R round-trip time;
C link capacity (packets/sec);
Tp propagation delay (secs);
N load factor (number of TCP sessions);
p probability of packet drop;

The first equation represents the TCP window, that
increase by one every round trip time, and halves when
a packet loss occurs. Packet loss rate is computed as
the dropping probability times the number of packets
sent per time unit. The second equation represents the
variation of queue occupancy as the difference between
the input traffic and the link capacity.

AQM schemes determine the relation between the
dropping probability and the nodes congestion status.

Here we recollect briefly the RED operation. RED
gateway calculates the average queue size,x, using a
low-pass filter with an exponential weighted moving
average of the instantaneous queue,q, as shown in the
following recursive formula:x = αq + (1− α)x, where
α is the memory coefficient. The average queue size is
compared with a minimum threshold and a maximum
one. When the average queue size is less than the
minimum threshold, no packets are dropped. When the
average queue size is greater than the maximum thresh-
old, every arriving packet is dropped. When the average
queue size is between the minimum and the maximum
threshold, each arriving packet is dropped with proba-
bility p, wherep is a linearly increasing function of the
average queue size. RED configuration is then specified
through four parameters: the minimum and the maximum
threshold (THRmin, THRmax), the maximum dropping
probability in the region of random discardPmax, and
the aforementioned memory coefficientwq.

RED can be modelled by the following equations:

ẋ(t)=−Kx(t) + Kq(t) (3)

p(x)=





0, 0 ≤ x < THRmin
x−THRmin

THRmax−THRmin
Pmax,THRmin ≤ x < THRmax

1 THRmax ≤ x

(4)

TABLE I

NETWORK PARAMETERS

Link Capacity (Mbps) Propagation Delay (ms)
1-4 20 15
2-3 10 5
3-4 20 10
4-7 10 10
5-1 20 15
6-2 20 5
8-2 20 15
3-9 20 10

whereK = − ln(1 − α)/δ and δ is the time between
two queue samples. The time intervalδ can be assumed
to be equal to1/C for a congested node.

The linearized system (TCP sources, congested node
queue and AQM controller) can be represented by the
block diagram of Figure 1. In the block diagram
L = Pmax/(THRmax − THRmin).

The open-loop transfer function of the system in
Figure 1 is:

F (s) =
L (RC)3

(2N)2 e−sR

(
1 + s

K

) (
1 + s

2N

R2C

) (
1 + s

1
R

) (5)

In [9] the authors present RED configuration rules,
that guarantee the stability of the linear feedback control
system in Figure 1 forN ≥ N− andR0 ≤ R+.

III. A N INSTABILITY EXAMPLE
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Fig. 2. Network topology

We consider a parking lot network whose topology is
depicted in Figure 2. The capacity and the propagation
delay of each link are reported in Table I. Packet size is
1500 bytes. Links between nodes4 and 7 and between
nodes2 and3 will play the role of bottlenecks.
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Fig. 1. Block diagram of linearized RED control system

The RED algorithm is deployed at nodes4 and 2,
respectively to manage the output queues for the link
4−7 and2−3. In what follows we refer to these buffers
simply as node4 buffer and node2 buffer, without
specifying the link.

Our RED configuration relies on the control theoretic
analysis of RED presented in [9]. Nevertheless, we do
not adopt exactly the configuration rules proposed there,
since their high stability margins do not allow simple
counter-example. Then, we verify RED-configuration
stability through the Nyquist plot of the open loop
transfer function.

We recall that the Nyquist criterion allows one to study
the stability of the closed loop system through the polar
plot of the open loop transfer functionF (jω). For the
functions we are interested in, the closed loop system is
stable if and only if the plot encircles the point(−1, 0).

We chooseTHRmin = 2, THRmax = 20, Pmax =
5%, and wq = 0.002. This configuration guarantees
stability if the number of flows is greater than or equal to
N− = 7 and the Round Trip Time is lower than or equal
to 110ms. Figure 3 shows the Nyquist plot of the open
loop transfer function (5) forR = 110ms and different
number of flowsN , whereas Figure 3 shows the Nyquist
plot for a number of flows,N = 8 and different values
of the round trip time,R.

Simulations were conducted through ns v2.27 [12].
We used TCP Reno implementation.

A. Single Bottleneck

A primary question is which metric is particularly suit-
able to catch instability phenomena. In this sense, though
instability is by many authors addressed looking at the
amplitude of queue size oscillations, we will better refer
to the normalized standard deviation as a more suitable
metric to analyze instability phenomena. For example,
when the number of flows decreases, stability margins
decrease according to the linear model developed in
[9], and one could expect larger queue oscillations. Yet,
at the same time the queue average value decreases
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Fig. 3. Nyquist plots for the considered RED configuration and
N = 4, 8, 12 flows
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Fig. 4. Nyquist plots for the considered RED configuration and
R = 80, 110, 140 ms

and the physical constraint of positive queue values can
determine smaller oscillations. Ultimately, the cause is
the RED coupling of queue length and loss probability,
which lets the operating point depend from the network
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conditions, like the load level. From a control theoretic
point of view one says that the RED controller has steady
state regulation errors.

Now, in order to analytically show how instability of
the linear model concretely affects the network perfor-
mance, we first present some results regarding the single
bottleneck scenario.

Two aggregates, each one of four TCP flows (N = 8),
enter the network through node5 and node6 with
destination node7 (solid lines in figure 2). The link
between nodes4 and7 is congested.

Figure 5 shows the instantaneous queue occupancy
time-plot for the buffer at node4. RED should be able
to keep the queue occupancy within the two thresholds,
which are shown in the figure as reference.
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Fig. 5. Instantaneous buffer occupancy with number of flowsN = 8

Let us progressively reduce the number of flows
through the network and see if instability occurs as
claimed in [9]. In Figure 6 the buffer occupancy is
shown to revisit with an higher frequency the regions
associated to buffer overload and underload (out of RED
thresholds).

Numerical results for the throughput and the normal-
ized standard deviation are shown in Table II. As the
total flow number decrease from8 to 6 we note that i) the
throughput over the link4− 3 reduces from9.80Mbps
to 9.70, ii) both the average queue occupancy and the
oscillation amplitude decrease, respectively from10.0 to
8.19 and from5.26 to 4.64, and iii) the normalized stan-
dard deviation, i.e. the ratio between standard deviation
and mean, increases from0.52 to 0.56.

If we reduce drastically the number of flows to4,
the above RED configuration, turns to be too aggressive,
which is evidenced by higher frequencies of buffer occu-
pancy oscillations and further reduction of the through-
put. Even longer periods, where buffer is underloaded
results from Figure 7.

Experimental results show that instability predicted by
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Fig. 6. Instantaneous buffer occupancy withN = 6
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Fig. 7. Instantaneous buffer occupancy withN = 4

the model in [9] leads to reduced link utilization and
higher normalized oscillations (higher jitter in percent-
age).

Conversely, if we increase the number of flows, higher
throughput and lower jitter can be achieved.

Node2 buffer has the same RED configuration. Table
II shows similar results when only the link2 − 3 is
congested, due to flows coming from nodes6 and8.

B. Two Bottlenecks

We now draw the attention to the fact that buffer
occupancy instability, may arise when flows through
node 4 are in part already controlled by some other
congested upstream node, for instance, node2 when link
2− 3 is congested (see Figure 2).

To recreate artificially such a scenario, let us introduce
an additional aggregate entering the network from node
8, with destination node9 (dotted line in figure 2). Node
4 buffer occupancy for a 4-flows aggregate exhibits a
high oscillatory behavior in figure 8.

From Figure 9 instability arises also at node2.
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TABLE II

NUMERICAL RESULTS

N6 N5 N8 Thr6 Thr5 Thr8 queue4 queue4 queue2 queue2

occupancy oscillation occupancy oscillation
6 6 0 5.36 4.57 - 13.6 0.41 0.94 0.26
4 4 0 5.39 4.41 - 10.0 0.52 0.95 0.25
3 3 0 5.29 4.41 - 8.19 0.56 0.96 0.28
2 2 0 5.32 4.17 - 6.31 0.64 0.97 0.43
0 4 0 - 9.49 - 5.51 0.72 0 0
4 0 4 4.92 - 4.92 0 0 10.48 0.48
4 4 4 3.60 6.06 6.12 8.05 0.73 9.36 0.62
4 4 6 3.03 6.59 6.82 7.51 0.75 11.60 0.53
4 4 8 2.59 7.03 7.33 7.16 0.74 11.60 0.45
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Fig. 8. Instantaneous node4 buffer occupancy in a two bottleneck
scenario
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Fig. 9. Instantaneous node2 buffer occupancy in a two bottleneck
scenario

The normalized oscillation values in Table II confirm
quantitatively the feelings obtained from Figures 8 and
9.

Note that, though the number of flows at each node
and the flow round trip time should assure stable oper-
ation, instability arises due to the traffic aggregate from
6 to 7, which traverses both the congested links.

This example shows the limits of local AQM con-
figuration ignoring the distributed nature of TCP flows
control in a multiple bottleneck scenario. If we consider
the configuration rules given in [9], instability probably
does not arise in such a simple example, but there is a
reduction of stability margins. This modifies the system
dynamic response and reduces the system robustness to
the flows number and the round trip time variation.

IV. T HE ANALYTICAL INSIGHT

In this section, we provide an insight into the phys-
ical causes of instability in our counter-example. We
start from a nonlinear multidimensional model of the
network with some simplifying assumptions, and prove
that the system is instable. Then, we come back to
one-dimensional systems, by considering only one TCP
aggregate at a time, the other ones acting as non reactive
flows. Despite such system decoupling is not correct
from an analytical point of view, it allows us to get
again the linear system described in Section II, but with
some different parameters. Hence, the effect of multi-
bottleneck can be helpfully seen as a parameter variation
in the same single bottleneck model we considered to
configure the RED. It allows us to understand why
instability arises and to simply predict the effect of
some network scenario changes, such as the number of
flows and the propagation delays. The limits of such an
approximation are detailed in the following subsection.

A. Nonlinear Model

We extend the single bottleneck congestion model
described in Section II to the case of two congested
nodes. With reference to the network topology depicted
in Figure 2 we obtain
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



Ẇ5 = 1
R5
− W5W5(t−R5)

2R5(t−R5)
p4(t−R5)

Ẇ6 = 1
R6
− W6W6(t−R6)

2R6(t−R6)
(p2(t−R6) +

+ p4(t−R6)− p2(t−R6)p4(t−R6))
Ẇ8 = 1

R8
− W8W8(t−R8)

2R8(t−R8)
p2(t−R8)

q̇4 = W5
R5

N5 + W6
R6

N6 − 1q4C4

q̇2 = W6
R6

N6 + W8
R8

N8 − 1q2C2

(6)

whereR5 = Tp2+ q4

C4
, R8 = Tp1+ q2

C2
, R6 = Tp1+ q2

C2
+

q4

C4
. For sake of simplicity in (6), the time dependance

is indicated only for delayed function values.
The above model relies essentially on the assumptions

of the original single bottleneck model. One further limit
is the way node 6 traffic has been considered in queue 4
equation: this equation ignores i) the delay from queue
2 to queue 4, and ii) that this traffic comes from another
congested node, and therefore has been shaped by queue
2 (the outgoing traffic cannot overcome the link capacity
between nodes 2 and 3).
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Fig. 10. Poles of the multidimensional system with two Padé
approximations of time delays

By linearizing the Model 6 and using Padé functions
to approximate time-delays, we obtain a rational Linear
Time Invariant model. Thus, we study system stability
considering the poles. Figure 10 shows the system poles
for two different Pad́e approximations. The zero-order
approximation (N = 0) simply corresponds to neglecting
time-delays (e−sR ' 1). There are four poles with
positive real part, hence the system is unstable. As
the approximation order increases, the number of poles
increases, and, at least up to the 20th order approxima-
tion, there are always four poles with positive real part.
For example poles for the fifth order approximation are
shown in Figure 10.

B. One-dimensional models

Now, we consider individually each of the three ag-
gregates and assume the other flows are non reactive
ones, i.e., we focus onWi, and assumeWj/Rj =
Wj0/Rj0 = cost, for j 6= i, whereNjWj0/Rj0 is the
average throughput of the aggregatej. Due to congestion
at nodes2 and 4, N5W50/R50 + N6W60/R60 ' C4 =
C2 ' N8W80/R80 + N6W60/R60. We can derive the
following model for the three aggregates:

{
Ẇ5 = 1

R5
− W5W5(t−R5)

2R5(t−R5)
p4(t−R5)

q̇4 = W5
R5

N5 + W60
R60

N6 − 1q4C4

(7)





Ẇ6 = 1
R6
− W6W6(t−R6)

2R6(t−R6)
(p2(t−R6)−

+ p4(t−R6)− p2(t−R6)p4(t−R6))
q̇4 = W50

R50
N5 + W6

R6
N6 − 1q4C4

q̇2 = W6
R6

N6 + W80
R80

N8 − 1q2C2

(8)

{
Ẇ8 = 1

R8
− W8W8(t−R8)

2R8(t−R8)
p2(t−R8)

q̇2 = W8
R8

N8 + W60
R60

N6 − 1q2C2

(9)

The first and the third system equations are the
same of the previous single-bottleneck system: bot-
tleneck capacities are respectively equal toC5eq =
C4 − N6W60/R60 = N5W50/R50 and C8eq = C2 −
N6W60/R60 = N8W80/R80. Neglecting the product
p2p4 in comparison to the termsp2 and p4, the second
system can be brought back to the single-bottleneck
model too (as regards dynamics), where the bottle-
neck capacity isC6eq = C4 − N5W50/R50 = C2 −
N8W80/R80 = N6W60/R60 and the RED dropping
curve is the sum of the two RED dropping curves at
node2 and4, i.e. peq(x) = p2(x) + p4(x).

The previous results are quite intuitive. Nevertheless,
we can obtain them via linearization of Systems 7, 8
and 9. Calculations are similar to those detailed in the
Appendix I of [9]. Thus, we obtain the following open-
loop transfer functions:

F5(s) =
L (R50C5eq)3

(2N5)2
e−sR50

(
1 + s

K

)
(

1 + s
2N5

R2
50

C5eq

) (
1 + s

1
R50

) (10)

F6(s) =
Leq

(R60C6eq)3

(2N6)2
e−sR60

(
1 + s

K

)
(

1 + s
2N6

R2
60

C6eq

) (
1 + s

1
R60

) (11)

F8(s) =
L (R80C8eq)3

(2N8)2
e−sR80

(
1 + s

K

)
(

1 + s
2N8

R2
80

C8eq

) (
1 + s

1
R80

) (12)
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whereLeq = 2L. These transfer functions differ from
transfer function in (5), only for the parameter values.

C. Stability considerations

In this section, we justify instability results shown in
Section III, by applying the Nyquist criterion to the open-
loop transfer functions in (10), (11) and (12).

We remember that our RED configuration assure sta-
bility for the system whose transfer loop function is (5)
with N = 8, R = 110ms andC = C4 = C2.

From the new open-loop transfer functions, we see
that the decrease of the number of effective flows for
all the three aggregates and the increase of the RED
slope for the aggregate6 contribute to system instability.
Yet, the decrease of the equivalent capacity makes the
system more stable. In order to evaluate the dominating
effect we have to consider numerical values for the
parameters, but we can state that as the number of flows
N8 increases,W5 exhibits instability. As the number of
flows N8 increase, the aggregate6 is going to be harder
choked, henceC5eq approachesC4 and the Nyquist plot
corresponding to the transfer function (10) approaches
the dashed curve in Figure 3, which corresponds to
N = 4; the plot encircles the point(−1, 0) and the
corresponding closed loop system is unstable.

With the numerical values from Table II, the one-
dimensional models predict thatW5 is unstable, whereas
W6 andW8 are stable:W8 is stable due to smaller RTT
in comparison to aggregate5 (Tp1 ≤ Tp2); as regards
the window sizeW6 a smallerC6eq compensates theN
reduction andL increase.

As regards the instability of the multidimensional
system, all the variables show instability. As a matter
of fact, W5 instability implies theq4 oscillations and
hence thep4 oscillations. The last affect the throughput
of the aggregate6. Aggregate6 couples the two queues
and hence it yields instability toq2, and so on.

One-dimensional models allows us to simply predict
for example the effect of increasingN8. We have already
stated thatW5 instability increases, at the same timeW8

becomes more stable and the coupling between the two
queues by the aggregate6 reduces. Hence, we expect
an overall more stable behavior at queue2. Performance
metrics in Table II forN8 = 6 and N8 = 8 confirm
results of one-dimensional models: instability increases
at the downstream node and it decreases at the upstream
one.

As regards the validity of our simple analysis, let
us consider for exampleW5. Results from System 7
are more accurate as long as i) aggregate6 is small
(W6(t) << W5(t)), or ii) it is not small, but it is not

markedly affected by the dynamics of the aggregate5
and of the queue4, i.e. as long as the behavior of the
aggregate6 is determined elsewhere, in our example at
the congested node2. For example the model provides
better a approximation if the number of flowsN8 in-
creases or the round trip timeR8 decreases.

V. GUIDELINES FOR NEWAQM SCHEMES

In the previous section we have modeled the effect
of a multi-bottleneck path as a parameter variation for
the single bottleneck model. This suggests that the effect
of multi-bottleneck path can be counteracted by robust
configuration of AQM controllers. In particular the min-
imum number of flowsN− should not take into account
flows being controlled by other nodes.

Hence the network administrator should evaluate not
only the minimum number of flows at each node and
their round trip time, but he also should get more
sophisticated information about traffic matrix across the
network and contemporaneously congested nodes.

Another approach would be to implement new coop-
erative AQM controllers, that base their control action
on information about the congestion status of the other
nodes. Simplicity is an obvious requirement, particularly
for signalling among nodes.

We think that the Explicit Congestion Notification
(ECN) field in IP packets could be usefully employed
for inter-nodes signalling.

According to [13], AQM controllers can set a Conges-
tion Experienced (CE) codepoint in the packet header
instead of dropping the packet, when such a field is
provided in the IP header and understood by the trans-
port protocol. The use of the CE codepoint allows the
receiver(s) to receive the packet, avoiding the potential
for excessive delays due to retransmissions after packet
losses. Upon the receipt of a single packet with the CE
codepoint set (CE packet), the ECN-capable TCP at the
end-systems must react as it would do in response to
a single dropped packet. Ultimately the ECN-capable
TCP is required to halve its congestion window for any
window of data containing either a packet drop or an
ECN indication.

ECN has been proposed as a light in-band signalling
form between nodes and client. We propose to employ it
for inter-nodes signalling. It appears to be a simple way
for nodes to transmit downstream information about their
congestion status. The advantages of ECN employment
are: no further network transmission resources are re-
quired, information travels along the data path, and it
can be used by all the nodes controlling the flow.
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AQM controller should monitor the ingoing traffic,
and evaluate the share of traffic controlled elsewhere,
by the percentage of CE packets.

As regards the way to employ such information,
we can think to employ one of the well-known AQM
schemes, where a tunable parameter can be set according
to the controlled traffic share. For example a RED
controller could decrease the dropping curve slopeL
as the percentage of CE packets increases in order to
maintain a stable operation.

VI. CONCLUSIONS

In this paper we showed that RED configuration based
on a single-bottleneck assumption may not prevent from
traffic instability when congestion occurs, at the same
time, in two different locations of the network. This
motivates future works where we will design cooperative
congestion local controllers under the assumption that
a congested node may communicate its state to the
neighbors.
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