
A Soft Real-Time Measurement System for a
Diffserv over MPLS Edge Router

Rosario G.Garroppo, Stefano Giordano, Fabio Mustacchio, Francesco Oppedisano and Gregorio Procissi

Dipartimento di Ingegneria dell’Informazione - Università di Pisa
Via Caruso 1, 56122 Pisa

Tel.: +39-050-2217511, Fax: +39-050-2217522
Email:

�
r.garroppo, s.giordano, g.procissi � @iet.unipi.it,

�
f.mustacchio, f.oppedisano � @netserv.iet.unipi.it

Abstract— The paper presents the architecture of a soft real
time measurement system designed to reside into a DiffServ over
MPLS Linux based router. The goal of this research is to develop
an open source software product to be used for management
purposes and to be integrated in the network control plane
in order to automate resource allocation and admission control
functionalities. The system is designed to be flexible, configurable
and modular and each module has been implemented in order to
minimize the impact of the system itself on the traffic dynamics.
Several issues on the realization of the software modules are
addressed and discussed. The output of the system is a sequence
of measurements that report the amount of per-PHB and per-
LSP traffic offered to the router over a configurable time window.
Traffic data are sampled according to a customizable sampling
frequency. The system has proven to be reliable as it passed
several functional tests. Preliminary experimental results have
shown that the output of the system accurately captures the
traffic patterns offered to the router.

I. INTRODUCTION

Emerging services such as Voice over IP, audio/video
streaming, videoconferencing and Virtual Private Networks
(VPNs) with Quality of Service have more stringent QoS
requirements (low latency and losses, large throughput) than
traditional “best effort” applications (e-mail, http, file transfer).
This fact leads to the deployment of network architectures
(e.g. DiffServ) which provide basic support to QoS ori-
ented applications. Moreover a considerable effort has been
dedicated over the last years to the performance evaluation
and optimization of operational IP networks: the so called
Traffic Engineering. In this context, the need for optimal
resource utilization and traffic performance entails the adop-
tion of dynamic allocation techniques and admission control
mechanisms. The focus of this paper is on the design and
implementation of a soft real-time measurement system to be
integrated in a Multi Access Inter Domain architecture for QoS
provisioning in MPLS/DiffServ networks. The measurement
system has been designed both to be used for management
purposes and to be integrated into the network control plane
to automate dynamic resource allocation and admission control
on the basis of traffic measurements and predictions. The
activities described in this paper have been developed within
the FIRB TANGO [1] and VICOM [2] projects.

Although the system design was strongly influenced by
the test-bed architecture proposed in both projects and by its

Fig. 1. MAID network architecture

specific requirements, its flexible design philosophy based on:� system overall modularity provided by socket intercon-
nection among the different modules/functionalities� use of open source code and tools� standard compliancy� inter-operability with commercial routers

makes the overall product readily portable on top of different
network contexts.

The measurement system is integrated in the experimental
test-bed developed under the TANGO project according to the
Multi Access Inter-Domain architecture (MAID) [3]. A few
comments on MAID are given next: a detailed description can
be found in [3].

The MAID network architecture (see figure 1) is based
onto two key elements, the Bandwidth Broker (BB) and the
Multiple Access Border Router (MA-BR). The Bandwidth
Broker acts as the centralized resource manager and is devoted
to traffic engineering operations (e.g. path computation, LSP
establishment and release), network element reconfiguration
and inter-domain communications. The MA-BR, which pro-
vides the inter-working between the access network and the
backbone network, merges the functionalities of an MPLS
edge router and of a DiffServ border router by mapping the

traffic onto the correct pre-established LSP and handling the
QoS parameters needed by each flow.

In the specific scenario, the measurement system has been
designed to be integrated onto prototypal routers based on
IA32 (PC) Linux OS platform. The complete set of func-
tionalities provided by the measurement system is accessible
via TCP/IP socket to enable the use of a remote centralized
management system.

II. SYSTEM REQUIREMENTS

The above depicted network context in which the measure-
ment system is supposed to be integrated, together with the
objective of using such a system within a closed loop resource
allocation mechanism, arise a number of requirements that will
be shortly outlined in this section.� Measurements of the traffic offered to the edge router

of a DiffServ/MPLS domain taken over arbitrary and
configurable time windows in the past. This information
should be available at any time upon request.� Low latency introduced by the system itself to reduce
the unavoidable impact of measurements onto network
performance.� Sampling of network traffic with accurate timing with
low sampling jitter, with no use of busy wait.� Timestamping of traffic samples in order to enable time
series processing, including prediction.� Data storage of per-flow traffic time series in a proper
database.� Remotization of the measurement system in order to
enable router control through a separate control network.� Multiple Client Support in order to enable simultaneous
operations, such as traffic monitoring, estimation and
prediction.� Quick delivery of information to client/s to prevent that
high processing delays impact the relevance of measure-
ments.� Interworking with other router subsystems such as rout-
ing, MPLS, RSVP-TE daemon, etc.

Fig. 2. Measurement system architecture

It is worth discussing a little more about the need for
registering in a database the load condition of the edge router.
Indeed, the system development would be much easier by
just adopting a trivial measurement server which responds
to queries from a remote client on the basis of the output
of a suitable measurement subsystem. This approach would
have reduced the implementation time at the cost of a reduced
flexibility and versatility of the project which would suffer
from several limitations, such as:� coarse accuracy of the sampling rate, due to the latency

introduced by the request network which sums up to the
other many variable delay factors;� weak capability of time series analysis/processing. In-
deed, typical operations may need several minutes worth
traffic data, which would not be available at the time of
request;� impossibility, for a network administrator, to have traffic
load conditions available at any arbitrary times.

The use of a local database effectively overcomes the above
listed issues: the price of this approach is, in turn, considerable
in terms of design and development complexity.

Although the most part of the above mentioned requirements
are met through the software modules presented in the present
work, a few of them are to be refined and will be addressed
in future works.

III. SYSTEM ARCHITECTURE: MODULES AND
FUNCTIONALITIES

In this section, the whole system architecture will be pre-
sented with particular focus on the description of the modules,
their functionalities and interworking operations.

Figure 2 shows the whole architecture of the system with
the implemented software modules. In the following, the
operation of all modules will be described in terms of design
implementation and functionalities.

A. Meter

The most obvious requirement of a measurement system
is, naturally, to monitor and register the traffic offered to the
host in which it is installed (the edge router, in this case).
In particular, it is required the measure of the total amount of
traffic (in byte) offered to the router over time windows starting
at given (but configurable) sample times with customizable
duration in the past. More formally, let �����	��

� be the amount
of traffic offered to the router within the time instants � and
 , (����
), let � be the window length and � be the sampling
interval. Then, the output of the measurement system should
be the sequence: �

����������������������� �����"!
As it will be clear in the following, the system will be able to
provide a more refined information in that it will give a matrix
of measurement:�

#�$ % �������&��� #�$ % ����������� �����"�' �)(being the PHB’ and LSP’ indexes respectively.

Fig. 3. Meter module location

In order to keep the system as “light” as possible, the core
of the system has been implemented as a kernel module. The
module, denoted as meter, intercepts and registers traffic data
within the chain of processing of an IP packet in the Linux
router. As shown in figure 3, the meter is placed in series to:

1) Ingress queueing discipline block, devoted to the mark-
ing of each packet with a parameter, the so-called
tcindex, that specifies its PHB.

2) The mangle table of the PREROUTING hook of Linux
netfilter, devoted to the marking of the fwmark param-
eter which specifies both the output physical interface
(in other words, the MPLS virtual interface) on which
the packet will be forwarded and which label will be
written into the shim header.

From the operational point of view, once launched, the
meter adds an entry to the /proc filesystem of the host ma-
chine and immediately starts observing traffic and collecting
measurements on <length>, <fwmark>, <tcindex> and
<timestamp> of each intercepted packet.

From the user space, it is possible, at any time, to
perform a measurement through the filesystem /proc
by using the common system calls to access ordi-
nary files. Specifically, the virtual file of interest is
/proc/meter/meter timeinterval.

The meter responds to the query with a report which
specifies, for each fwmark and tcindex (namely LSP and
PHB), the sampling time and the amount of traffic observed
within the window horizon (figure 4). “Out-of-window” traffic
data are flushed.

The timestamp information is given in terms of number
of seconds and microseconds since January 1st 1970 (wall
clock time). Notice that the choice of timestamping packets in
kernel space is not accidental: indeed, that is the only way of
getting the exact information on the time instant in which the
measurement is taken.

Several extra control parameters are accessible through the
filesystem /proc such as the window length currently in use,
number of measured packets and the latency that the overall
measurement system introduces with a precision of about a
CPU clock cycle.

As a concluding remark, it should be clear that the meter
module has been designed in order to meet two basic re-
quirements: collection of traffic data and timestamping. The
very limited functionalities implemented into the kernel space
should not surprise: it is wise convention, indeed, to avoid

Fig. 4. Operational mechanism and traffic report of the Meter module

as much as possible modifications of any type to a so crucial
component of a system such as the kernel. Indeed, the modules
that will be described in the next sections are implemented into
the user space and belong to a unique executable application,
named metercontroller.

B. Info-unit

As shown in the previous section, the meter module provides
traffic measurements for each pair (fwmark,tcindex) with no
information on per-LSP and per-PHB traffic load. Although
fairly sophisticated, this information is not directly usable by
network administrators or automated modules for resource
allocation which instead, need information on per-LSP and
per-PHB traffic load. As well known, LSPs are identified by
means of a LSP-ID, unique within the domain and known
by the control plane through its RSVP-TE daemons which
communicate among each other within the domain.

The info-unit has been implemented to sort out the issue
of mapping the fwmark parameter into the proper LSP-ID.
The translation of tcindex into a PHB identifier is, instead,
straightforward as the correspondence is static; thus, this issue
has been solved by just means of a table.

The information needed to perform the above detailed
translation is retrieved over several system elements, some
of them belonging to the kernel. As shown in figure 5, the
info-unit should communicate with routing, MPLS and RSVP-
TE daemon sub-systems. The interworking with the routing
subsystem permits to achieve the information on which MPLS
virtual interface each fwmark will be forwarded to. This
information, in turn, is used to query the MPLS subsystem
to retrieve the label which will be placed into the shim header
of packets marked with the same fwmark. The knowledge of
the label permits, finally, to find the LSP-ID by querying the
RSVP-TE daemon.

Fig. 5. The Info-Unit module

Once the complete information is achieved, the info-unit
generates a list of correspondence fwmark – LSP-ID: through-
out this paper, this list will be referred to as LspList. As
it will be described in the following sections, this table of
correspondence will be used by the sampling and traffic data
management system to convert the data acquired by the meter
module into a format “readable” by the control plane.

The the Info-Unit sub-module in charge of retrieving in-
formation from the router subsystems has been implemented
by properly modifying the application tunnel (from the Tequila
project [4]) as well as several library functions in a multithread
programming context.

At this stage of the presentation, it is worth introduc-
ing (it will be elaborated upon in details in the following
section) a typical issue which arises naturally when dealing
with databases, the problem of data consistency. Information
consistency is crucial to assure the correct functionalities of
the whole system; for this reason, the info-unit module is
equipped with a security mechanism aimed at preserving the
information stored in the database should some of the router
subsystem delay with data responses. In other words, in case
the information requested to the router subsystem does not
become available by a given timeout (which depends on the
sampling rate), the info-unit will not update at all with respect
to the previous sampling period, and so the LspList.

As a final comment, the info-unit module acts as the
interworking unit among the measurement system and the
host machine operating system and is specifically designed
to avoid unnecessary waiting times which could significantly
deteriorate the traffic information relevance.

C. Sampler

As shown in figure 6, the sampler module somewhat rep-
resents the core of the whole architecture and is responsible
for the most part of the system complexity.

Its target is to query the meter at a given sampling frequency
and to report the results on the traffic database, from now
on referred to as TrafficDB. The traffic database consists of
a list of traffic array indexed by the LSP-ID. Each array
is implemented as a round robin database, that is a static
length database of length denoted as HISTORY LENGTH,

Fig. 6. The Sampler module architecture

with a pointer to the oldest data. By replacing the oldest
element with the newest one and by incrementing the pointer
modulo HISTORY LENGTH, an array reporting the most
recent HISTORY LENGTH traffic samples (or, in other words,
a traffic time series for each LSP) is obtained.

In addition to registering data on the TrafficDB, the sampler
is in charge of sending traffic information to the clients
connected to the system by writing on the file descriptors
which logically represent them.

Naturally, clients may be interested in different data: they
may want to retrieve the whole database content, the informa-
tion associated with some LSP, the very last traffic sample and
so forth. File descriptors and the modality in which they can be
selectively accessed are contained into an extra structure, the
so-called DescriptorList), which is managed concurrently by
the sampler and by the controller (CTRL) module, described
in the next section.

TrafficDB is indexed with respect to LSP-ID; the sampler,
after retrieving data from the meter, converts fwmarks into
LSP-ID by looking up the LspList and only then fills the
trafficDB and the file descriptors associated to the clients.

The whole system has been implemented through the so-
called Light Weighted Processes (LWP), also known as thread:
the sampler is the main thread and, once launched, generates
two more threads associated with the info-unit and with
the controller respectively. After the initial setup of all the
components, the sampler starts its main cycle which consists
of:� Sampling of traffic information from the meter;� Conversion of the pairs �)*,+.-0/21435��687 ' �:92;<�5� into the

pairs �>=@?�AB�DCFE��GAIHKJ�� ;� Registering the retrieved information onto the TrafficDB;� Writing the retrieved information onto the file descriptors
listed in the DescriptorList;� Notifying the coming-up “end of cycle” the all the system
components to let them complete their operations as fast

as possible;� Triggering the process sleeping phase whose duration
is given by the sampling interval minus the time spent in
the previous operations;� Returning back to the beginning of the cycle.

It is worth noticing that the above described cycle is the
steady state sequence of operation performed by the sampler,
when it is granted with the exclusive access to the TrafficDB.
However, this does not hold at all the times. Indeed, whenever
a client connects to the measurement system, it may obtain the
exclusive access to the database. Since the time needed for
server–client information transfer is not, in general, a-priori
predictable, the sampler may happen to be stalled waiting for
the access to the database, which could result in a delayed
sampling time. To get around to this issue, which has to
be avoided, the sampler is equipped with a temporary cache
where it can store data whenever TrafficDB is busy. The size
of the cache should be reasonably limited in that its content
has to be transferred to the client in less than a sampling
interval time. Finally, to avoid that slow clients determine the
cache overflow, a signalling mechanism triggers the immediate
closing of data transfer to the client in case the cache content
level hits a given “safeguard” threshold.

The rest of the section describes in details each of the above
listed operations.

1) Sampling: The operation of reading data from the meter
is pretty straightforward as it consists of simple reading access
to a file. The sole trick that has been used is the introduction
of a end-of-message marker to avoid retrieving useless and
potentially dangerous information. Information is stored in a
data structure called TrafficList which contains the number
of measured bytes for each pair �>*,+L-M/F1435� 687 ' �:9F;<�,� . At this
time, the sampler also registers the timestamp associated with
the sampling time in the HISTORY LENGTH vector.

2) fwmark Conversion: All the structures used in the sys-
tem are created to let the processes to communicate with each
other. In this light, the LspList acts as the way the sampler
and the info-unit communicate.

The modularity of the whole system design and the pro-
cesses’communication require, though, a controlled concurrent
access to the data structures that permit the communication.
As an example, as long as the LspList is in use by the sampler,
it must not be accessed by the info-unit to avoid the whole
system to collapse.

The access control to the structures is implemented by
means of specific variables called semaphores for which the
operating systems guarantees the atomicity of the operations
that involve them. In other words, while a thread is about to
modify a semaphore, no other processes can access it.

As previously detailed, the LspList contains the mapping
fwmarks – Lsp-ID provided by the info-unit to be passed to the
sampler. Moreover, since it is filled through data retrieved by
the RSVP-TE daemon, it provides information on the number
of LSPs installed on the router together with their identifiers.
The knowledge of these data allows the sampler to consistently
update the TrafficDB.

3) Information storing: The comparison between the traf-
ficDB content and the LspList allows the sampler to build a
new TrafficDB in which the LSPs teared down during the last
sampling time are removed and the new LSPs established in
the same time interval are added up. This way, the TrafficDB
is always synchronized with the actual dynamic of the system
which is perfectly known by the control plane. Naturally, the
sampler also registers onto the TrafficDB the traffic informa-
tion retrieved by the TrafficList.

4) Information transfer to clients: Clients are connected to
the server through TCP connections. At the operating system
level, they are represented as file descriptors, that is, as integer
numbers.

File descriptors and clients’requirements are stored in the
DescriptorList. The whole operation is carried out in parallel to
the TrafficDB update in order to achieve a full synchronization
of data registered in the database and presented to the clients.

5) End of cycle notification: As soon as the sampler has ter-
minated its cycle, it communicates to the system that the struc-
tures are available by simply incrementing the semaphores
involved in its previous operations.

6) Sleeping: The amount of time needed to complete the
above described operations depends on many factors such as
the number of installed LSPs, CPU processing capacity, etc..
Thus, the time which elapses between the end of the cycle and
the next sample time is not a-priori predictable and, in fact,
should be computed each time.

A possible way of implementing the waiting time by means
of a program is to let a process count a number of CPU
clock cycle which corresponds to the desired waiting time.
This operation is known as busy wait in that the processor
remains active by occupying 100% of the host machine CPU.
This algorithm, though, does not guarantee any accuracy in the
computation of the waiting time unless the process is given
the highest priority. As a result, the router would get stuck in
an essentially useless operation; even packet forwarding would
be stalled.

For those reasons, the sampler features a closed loop sam-
pling mechanism based on inactive waiting times that uses the
nanosleep() library function. This function forces the system
to a sleeping state in which the kernel does not assign the
CPU to the sampler until a timeout expires.

The use of nanosleep() or its similar (sleep(), usleep(), etc.)
arises the natural problem of the accuracy of the actual waiting
time. Indeed, the above functions guarantee that the waiting
time is at least the requested waiting time; an extra stochastic
term which depends on many factors (CPU load, interrupt rate,
etc.) has to be accounted for. Moreover, as the processing
time the sampler needs to carry out sampling and database
management is variable, the system should make up for as
quickly as possible.

For those reasons, the use of a predetermined waiting time
results in an intolerable derive of the sampling interval, and a
more clever algorithm to compute the waiting time is needed.
The proposed solution aims at tackling the two main causes
of errors, namely:

nT +

−

t [n]

e[n]

1/z

me[n]

+

−
−

−
−

nanosleep

+

−

ne [n]

ne [n−1]

pt [n]
T

+

+

d [n]

t [n+1]
 1/z

w [n]

 wr [n]

tn [n]
 LP

Fig. 7. Block diagram of the waiting time computation algorithm

� data processing delay of the sampler;� intrinsic delay introduced by the nanosleep();
and is represented in figure 7. The algorithm is based upon

the comparison between the actual and the ideal sampling
times. The stochastic error sources are accounted for through
the nanosleep block and through the “processing delay” input.

The first sum block computes the time already spent within
the sampling interval due to the above detailed causes and
has to be deducted from the nominal waiting time � . This
term represents the total sampling error which is averaged
through a simple low pass filter. To obtain the input parameter
of the nanosleep function, this quantity is deducted from the
nominal sampling interval together with the processing time
and a simple prediction of the error which will be introduced
by the nanosleep block. Such a prediction consists of the error
the nanosleep introduced the step before. The rationale of
this approach relies upon the correlation of such an error,
that strongly depends on the system load which, in turn, is
supposed to be slightly different over back to back sampling
intervals. The output of the system is the actual sleeping time.

Roughly speaking, the actual sequence of waiting time
represents a point process with sampling epochs 6�N5���O�P �RQ2�GST�R!R!U! which ideally should be as close as possible to the
sequence ��NV�W���.���X� P �RQY�ZS
�U!R!R! . The system shown in
figure 7 is designed to force the actual sampling pace to meet
the above requirement.

D. Controller

The controller module permits to external entities the access
to the measured data. It is relevant to note that the module has
a high importance, since the whole system is useful only if
it is able to acquire traffic data and make them available to
the external world. To release the acquired data, this module
should manage a certain number of tasks, such as the support
for the remote login, the access control through authentication,
the support of different clients connected at the same time
(and the related problems), the remote control of the job
parameters of the system, the error management which should
be friendly etc... The experimental software developed sofar
does not include some of these functionalities, but it has been
thought for an easy integration of them, trying to account for
all the possible scenarios of the system utilization.

As the figure 8 illustrates, the system considers the presence
of several controllers, one for every client. Each controller

Fig. 8. The Controller module

takes care of the communication with a single client, of the
access control to the TrafficDB and of the forward of the
client requirements to the sampler, which then can send only
the data required by the client. The controller module is
realized like a semi-concurrent server that accepts connections
on a TCP port. Upon a connection request arrival, it starts
exchanging messages with the client in order to understand
its requests; after that, it tries to obtain the exclusive use of
the TrafficDB. The messages set used in this phase will be
defined by means of the markup language, XML. When the
system gives the permission to access to such a structure, the
data transfer towards the client starts and, at the same time,
the sampler begins writing data in the cache. The module
controller is equipped with a signalling system able to stop the
data transfer from the sampler to the client whenever the filling
level of the cache exceeds a threshold that represents the limit
beyond which the data integrity is not guaranteed. Once the
client requests are satisfied, another copy of the controller is
instantiated. This copy is used to manage connection requests
provided by other clients, while the old controller instantiation
remains connected to its client for further messages exchanges.
At the time the client decides to close the connection, the
controller carries out all the operations necessary to free the
memory of the DescriptorList and then it stops. To date, the
developed module implements the management functions of
the signalling coming from the sampler, the access control of
the different controllers to the TrafficDB, the communications
towards the sampler of the client requests and the operations
needed to free the memory when the client logoffs.

E. Client

The client to access to the described system information
is not yet implemented, although some parts needed in the
described system are already integrated. In particular, it is
relevant to note that the client will have to maintain either

Fig. 9. Testbed used for the experimental analysis

a copy of the TrafficDB or a part of it in order to carry
out monitoring, forecasting, management, etc... All the given
structures and the related management routines are already
implemented and tested and therefore the client developer
should implement the communication and monitoring utilities
only.

IV. TEST AND MEASUREMENTS

This section reports the preliminary results on functional
and performance tests carried out on the whole system. The
focus is concentrated on evaluating the behavior of the meter
module and on the overall effectiveness of the system in
capturing actual traffic flows.

The testbed considered to test the system prototype is shown
in figure 9; it is composed by two PCs connected by means
of a Fast Ethernet switch. Each PC is equipped with a Fast
Ethernet NIC based on Realteck 8139 chipset.

The PCs have the following hardware features:� PC 1 AMD AthlonXP 2000+ , 512 MB RAM memory,
O.S. Slackware Linux 9.0, kernel 2.4.20 (MPLS Patch),
network address 192.168.3.1� PC 2 AMD K6 II 400 MHz, 196 MB RAM memory, O.S.
RedHat Linux 8, kernel 2.4.20 (MPLS Patch), network
address 192.168.3.5

The traffic loading the measurement system has been gener-
ated by means of the software traffic generator rude [5] version
1.62, which permits to generate packets starting from a file
containing the inter-departure time and the size of each packet
to transmit; this permits to generate VBR traffic starting from
data acquired during measurement session carried out using
software sniffer such as TCPDump. On the other hand, the
CBR traffic has been generated using the application brute
[6].

The experimental tests have been carried out by varying
some parameters:� The bitrate in order to verify the accuracy of the meter

module under different traffic load conditions

� The packet size in order to heavy speed up the timing
system integrated in the application meterctrl that, at
least in its first versions, was blocked from an excessive
number of interrupt requests. It is relevant to note that
when short packet sizes are considered a fixed bitrate is
achieved using a higher packet rate; this implies a higher
number of interrupt requests in all nodes crosses by the
packet flow.

A. Meter module performance

Given that the meter module is implemented as a hook
of the netfilter of the O.S. Linux, it manages all the packets
transferred from the NIC to the IP layer of the kernel. This
observation permits to deduce that the module does not drop
any packet since each time a packet enters in the kernel it
is normally processed by every hook of the netfilter. On the
contrary, if the kernel does not accept a packet, the module will
not see it and, therefore, the information on this packet will
be lost. It is worth considering the case where a packet could
be accepted from the kernel, be measured from the meter and
then discarded from the output scheduler. However this case
is not considered in the proposed system, since it is planned
to measure the traffic offered to the router, regardless that this
traffic is forwarded in MPLS domain or not.

In the test of the system, it is interesting to evaluate the
latency added from the module to the single packet. To
quantify the latency, a quite objective performance parameter
is the number of clock cycles that a packet spends in the
module. This number is quite independent of the hardware
features of the equipment hosting the measurement system as
long as the O.S. kernel can manage the interrupts without the
overlapping of the routines managing them. As an example
of the problems deriving from this overlapping, it can be
considered the case when a packet arrives at the NIC before
the kernel has finished the processing of a previous packet. In
this case, the routine managing the interrupt produced by the
arrival of the new packet runs over the CPU, producing the
stop of the active task. Packet processing will resume as soon
as the routine finishes its operations. Hence, the permanence
time (expressed in terms of clock cycles) of a packet in a hook
can be much higher than the time necessary to the module to
carry out the elaboration of the same packet.

Figure 10 shows this phenomenon observed in the module
meter installed in the router PC2. The plot has been obtained
by carrying out several experiments with CBR traffic at
different packet rates and averaging the delay on the number
of received packets that, considering a constant duration (equal
to 30 seconds) of the experiments, varies with the packet
rate. Furthermore, the plot reports the percentage of CPU
occupation observed at different packet rate.

Also, figure 10 shows that the delay is nearly constant as
long as the CPU occupation is below 100% while, thereafter
(about 40000 pps in the specific case), the module propagation
delay grows. Indeed, at full load the processor cannot effec-
tively handles all the interrupts and the ordinary processing of

 0

 100

 200

 300

 400

 500

 600

 700

 0 20000 40000 60000 80000 100000

cp
u c

yc
le

s
/ c

pu
%

pps

latency
cpu usage

Fig. 10. Permanence time of the packet in the meter (clock cycles)

packets at the data plane level (forwarding, policying, marking
etc...) is dramatically impaired.

An analogous phenomenon occurs even with more powerful
processors: naturally, the threshold beyond which the delay
increases is higher. The use of dynamic memory in the
implementation of the meter does not modify the qualitative
behavior above described: the latency, though, is more than
ten times higher.

To summarize this discussion, when the router operates in
normal conditions, the processing time of packets due to the
meter module is of the order of hundreds of clock cycles. This
results in a negligible latency which, moreover, decreases as
the router CPU capacity increases.

B. Overall system performance

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 0 500 1000 1500 2000 2500 3000

B
yt

es

seconds

tcpdump
meter

Fig. 11. Comparison with tcpdump: videoconference session

From a higher level point of view, the whole system
performance was first assessed by using it to monitor a
videoconference session traffic flow. Figures 11, 12 and 13
report the sequence of samples taken on-line by the system
together with the ideal sequence of samples obtained by post-
processing of data acquired by tcpdump [7]. The results
confirm the ability of the measurement system in closely
capturing the actual traffic dynamic even in case of very quick

 25000

 30000

 35000

 40000

 45000

 50000

 0 20 40 60 80 100

B
yt

es

seconds

tcpdump
meter

Fig. 12. Comparison with tcpdump: (videoconference session: 100 seconds
detail

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 2700 2720 2740 2760 2780 2800

B
yt

es

seconds

tcpdump
meter

Fig. 13. Comparison with tcpdump (videoconference session: 100 seconds
detail

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 20 40 60 80 100 120 140

B
yt

es

seconds

meter
tcpdump

Fig. 14. Comparison with tcpdump on traffic measurements (FTP traffic)

changes of the traffic pattern as proven by 12 e 13 which
zooms a 100 sec. slice of the overall traces of 11.

Analogous comments apply to figure 14 which shows the
result of a similar test carried out to monitor the traffic
produced by a file transfer session.

V. CONCLUSION

The paper describes in detail the architecture of a soft
real time measurement system designed to resides into a
DiffServ over MPLS Linux based router. The goal of this
research was to develop an open source software product to
be used for management purposes and to be integrated in
the network control plane to automate resource allocation and
admission control functionalities. The system is designed to be
flexible, configurable and modular and each module has been
implemented in order to minimize the impact of the system
itself on the traffic dynamics. According to configurable sam-
pling frequency, the system produces a sequence of per-PHB
and per-LSP traffic measurements taken over a customizable
time window. The system has passed several functional tests
and preliminary experimental results show that it accurately
captures the traffic patterns offered to the router.

ACKNOWLEDGMENT

This paper is partly supported through the MIUR FIRB
projects TANGO and VICOM.

REFERENCES

[1] http://tango.isti.cnr.it/
[2] http://www.vicom-project.it/
[3] G. Carrozzo, N. Ciulli, S. Giordano, Multi Access Inter Domain archi-

tecture for QoS provisioning in MPLS/DiffServ networks submitted to
TANGO internal workshop, Madonna di Campiglio

[4] http://www.ist-tequila.org/
[5] http://rude.sourceforge.net/
[6] http://netgroup-serv.iet.unipi.it/brute
[7] http://www.tcpdump.org

